Abstract

Full Text

The relevance of creating systems for on-line monitoring of the elastic moment on the spindles of rolling mill stands is substantiated. The main reason for continuous monitoring is the high dynamic loads that arise when the rolls enter the cage. Using the example of electromechanical systems of the plate mill 5000, it is shown that the amplitude values of the elastic moment on the spindles can exceed the rated motor torque by 2 or more times. The oscillograms of the speeds and torques of the main drive motors of upper and lower rolls (VGP and NGP), obtained during 19 passes of reverse rolling of a pipe billet, are considered. An opening of the speed control loop was noted due to reaching the torque limit, which leads to an increase in dynamic loads. The importance of calculating the spindle life automatically is emphasized. The structure of the developed information system for on-line monitoring of the elastic moment is considered. An observer circuit with a function for determining the exhausted resource is proposed. A controller has been developed for calculating the amplitudes of dynamic moments and the life of spindles in Matlab Simulink. A method for calculating fatigue loads based on the linear Palmgren-Miner hypothesis is presented. Analytical expressions and a curve of the dependence of the exhausted resource on the multiplicity of the moment during capture are obtained. An assessment is given for the service life of the spindles of the upper and lower rolls for a rolling cycle and for a month under real load. It is shown that the uneven distribution of spindle loads leads to a significant reduction in their service life and a difference in the predicted service life. Due to the large volume of information being processed, it is recommended to introduce cloud technologies using BigData capabilities.

Keywords

rolling stand, spindle, dynamic loads, resource, system, methodology, calculation, recommendations

Boris M. Loginov Ph.D. (Engineering), Associate Professor, Department of Industrial Power Supply, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., https://orcid.org/0000-0003-3337-3148

Olga A. Gasiyarova Junior Researcher of Department of Automation and Control, Moscow Polytechnic University, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., https://orcid.org/0000-0003-3794-9028

Andrey A. Radionov D.Sc. (Engineering), Professor, Head of Department of Automation and Control, Moscow Polytechnic University, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., https://orcid.org/0000-0002-3914-4429

Konstantin E. Odintsov Ph.D. (Engineering), Associate Professor, Department of Industrial Power Supply, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., https://orcid.org/0000-0003-0699-6016

1. Selivanov I.A., Karandaev A.S., Evdokimov S.A., Khramshin V.R., Shemetova A.A., Evdokimov A.S., Lukin A.A., Andryushin A.Yu., Shilyaev P.V., Golovin V.V., Titov A.A., Mostovoy S.E., Petryakov S.A. Automatic drive enhancement and electrical power equipment diagnostics. Izvestiya vuzov. Elektromekhanika [Bulletin of Higher Educational Institutions. Electromechanics], 2009, no. 1, pp. 5-11. (In Russian)

2. Jiao Z., He C., Wang L., Cai Y., Wang X., Sun X. Torque Model in Plate Rolling Process with Biting Impact Considered ISIJ International. 2021, vol. 61(1), pp. 239-247. doi: 10.2355/isijinternational.ISIJINT-2020-230

3. Gasiyarov V.R., Khramshin V.R., Voronin S.S., Lisovskaya T.A., Gasiyarova O.A. Dynamic Torque Limitation Principle in the Main Line of a Mill Stand: Explanation and Rationale for Use. Machines. 2019, 7(4), 76. doi: 10.3390/machines7040076

4. Khramshin V.R., Zinchenko M.A., Loginov B.M., Karandaev A.S. Electric Drive Control at Plate Mill Stand in the Asymmetrical Rolling Mode of the Transfer Bar Head. Elektrichestvo [Elektrichestvo], 2023, no. 4, pp. 61-72. doi: 10.24160/0013-5380-2023-4-61-72. (In Russian)

5. Hou Y., Kong J.Y., Wang X.D. Research on Online Monitoring for the Main Drive System of Rolling Mill. Applied Mechanics and Materials. 2011, vol. 127, pp. 444-448. doi: 10.4028/www.scientific.net/amm.127.444

6. Filho A.C.L., Belo F.A., Alves dos Santos J.L., Gomes A.E. Self-Powered Telemetric Torque Meter. ASME. J. Dyn. Sys., Meas., Control. 2011, 133(4). 045001. doi: 10.1115/1.4003264

7. Khramshin V.R., Evdokimov S.A., Gasiyarova O.A., Karandaev A.S., Loginov B.M. Feasibility Study of Monitoring Telemetric System for Elastic Torque of the Rolling Mill Stand. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2022, no. 3(56), pp. 70-79. doi: 10.18503/2311-8318-2022-3(56)-70-79. (In Russian)

8. Radionov A.A., Gasiyarov V.R., Tverskoi M.M., Khramshin V.R., Loginov B.M. Implementation of telemetric on-line monitoring system of elastic torque of rolling mill line of shafting. 2nd International Ural Conference on Measurements (UralCon). IEEE, 2017, pр. 450-455. doi: 10.1109/URALCON.2017.8120750

9. Gasiyarova O.A., Karandaev A.S., Erdakov I.N., Loginov B.M., Khramshin V.R. Developing Digital Observer of Angular Gaps in Rolling Stand Mechatronic System. Machines. 2022, 10, 141. doi: 10.3390/machines10020141

10. Loginov B.M., Khramshin V.R., Gasiyarova O.A., Semitko A.Y., Gasiyarov V.R. Digital Observer of Elastic Torque of Rolling Stand Two-Mass System. Lecture Notes in Electrical Engineering. 2023, vol. 986, 6 p. doi: 10.1007/978-3-031-22311-2_24

11. Gasiyarov V.R., Radionov A.A., Loginov B.M., Karandaev A.S., Gasiyarova O.A., Khramshin V.R. Development and Practical Implementation of Digital Observer for Elastic Torque of Rolling Mill Electromechanical System. J. Manuf. Mater. Process. 2023, 7, 41. doi: 10.3390/jmmp701004

12. Xu H., Cui L.-L., Shang D.-G. A study of nonlinear coupling dynamic characteristics of the cold rolling mill system under different rolling parameters. Advances in Mechanical Engineering. 2017, 9(7). doi:10.1177/1687814017713706

13. Antsupov V.P., Fedulov A.A., Antsupov A.V. The Kinetic Approach to the Design Evaluation of the Reliability of Machine Parts. Lecture Notes in Mechanical Engineering. 2021. doi: 10.1007/978-3-030-54814-8_31

14. Gromyka D.S., Utenkova T.G., Korotkova O.Yu. Review of Assessment Methods for Wear Mechanisms in Executive Elements of Mining Machines. Gornyi informatsionno-analiticheskiy bulleten Горный информационно-аналитический бюллетень [Mining informational and analytical bulletin], 2021, no. 2, pp. 75-86. doi: 10.25018/0236-1493-2021-2-0-75-86. (In Russian)

15. Sokolov L.D., Grebenik V.M., Tylkin M.A. Issledovanie prokatnogo oborudovaniya [Rolling Equipment Research]. Moscow, Metallurgy, 1964. 488 p.

16. Antsupov A.V., Antsupov V.P., Antsupov A.V. (jr.), Nalimova M.V., Gubin A.S. Reliability Prediction and Wear Resistance Assessment for Friction Units of Metallurgical Equipment. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University], 2007, no. 1, pp. 80-83. (in Russian)

17. Antsupov A.V. (jr.), Antsupov A.V., Antsupov V.P. Analytical Method of Engineering Estimate for Metallurgical Machine Elements Service Life. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya Metallurgiya [Izvestiya. Ferrous Metallurgy], 2017, no. 60(1), 30-35. doi: 10.17073/0368-0797-2017-1-30-35 (In Russian)

18. Antsupov A.V. (jr.), Antsupov A.V., Nalimova M.V., Antsupov V.P., Rusanov V.A. Failure Pattern of Universal Spindle Couplings by Bronze Bearing Wear Resistance Criterion. Fundamentalnye issledovaniya [Fundamental Research], 2017, no. 4 (Part 1), pp. 9-12. (In Russian)

19. Gasiyarov V.R., Radionov A.A., Loginov B.M., Zinchenko M.A., Gasiyarova O.A., Karandaev A.S., Khramshin V.R. Method for Defining Parameters of Electromechanical System Model as Part of Digital Twin of Rolling Mill. Journal of Manufacturing and Materials Processing. 2023, 7(5), 183. doi: 10.3390/jmmp7050183

20. Gasiyarov V.R., Kornilov G.P., Loginov B.M., Zinchenko M.A., Khramshin R.R., Odintsov K.E. Adaptive Load Division Controller for Electric Drives of Roll Stand. 2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2023, pp. 1135-1140. doi: 10.1109/ICIEAM57311.2023.10139300

21. Maklakova E.A., Gasiyarov V.R., Maklakov A.S., Voronin S.S. Simulation modeling of the rolling mill stand 5000 OJSC MMK. 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2016, pp. 1-4. doi: 10.1109/ICIEAM.2016.7911498

22. Radionov A.A., Gasiyarov V.R., Maklakova E.A. Improving Reliability of Hot Plate Mill Electromechanical System. Key Engineering Materials. 2016, 685, pp. 417-421. doi: 10.4028/www.scientific.net/kem.685.417

23. ibaPDA Scalable basic software for measured data collection. Available at: https://www.iba-ag.com/ru/ibapda (accessed 7 January 2024). (In Russian)

24. Radionov A.A., Gasiyarov V.R., Karandaev A.S., Loginov B.M., Khramshin V.R. Controlling the Electric Drives of the Reversing Rolling Stand Rolls of a Rolling Mill to Form a Curvature at the Workpiece Front End. IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS). IEEE, 2019. 7 р. doi: 10.1109/PEDS44367.2019.8998801

25. Shokhin V.V., Permyakova O.V., Kisel E.S. Electrical Engineering Systems of Rolling Stand. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2014, no. 23, pp. 40-43. (In Russian)

26. Radionov A.A., Liubimov I.V., Yachikov I.M., Abdulveleev I.R., Khramshina E.A., Karandaev A.S. Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data. Energies. 2023, 16, 4630. doi: 10.3390/en16124630

27. Miner M.A. Cumulative damage in fatigue. J. Applied Mechanics. 1945, no. 12, pp. 159–164. doi: 10.1115/1.4009458

28. Huang T., Ding R.-C., Li Y.-F., Zhou J., Huang H.-Z. A Modified Model for Nonlinear Fatigue Damage Accumulation of Turbine Disc Considering the Load Interaction Effect. Metals. 2019, 9, 919. doi: 10.3390/met9090919

 

Loginov B.M., Gasiyarova O.A., Radionov A.A., Odintsov K.E. Method for Calculating Spindle Life at a Rolling Mill Stand Based on On-Line Measurements of Elastic Moment. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2024, no. 2(63), pp. 17-26. (In Russian). https://doi.org/10.18503/2311-8318-2024-2(63)-17-26