download PDF

Abstract

The design of the electrical part of the switchgear of substations is mainly carried out without taking into account the economic components and the projects in this case must comply only with regulatory documents. The exclusion of economic factors from consideration when designing switchgears for substations is also due to the lack of time for a design engineer involved in the development of large-scale project documentation and additional calculations under the conditions suitable for the end of the project execution period completely exclude the possibility of integrated accounting of all factors when choosing a switchgear circuit. The paper proposes an approach to determine some of the economic components of the costs for the design, construction, installation, commissioning and operation of switchgears for substations of 35 kV and above. The developed algorithm is adapted to the conditions of computer-aided design "ORU CAD", which allows for the development and documentation of the design of switchgear substations with the possibility of taking into account economic indicators. This article provides algorithms for calculating only economic indicators (capital investment, repair and maintenance costs) of substation switchgears. In the future, it is planned to develop an algorithm for determining the economic damage from the interruption of the power supply to external sources of load, which is powered by the designed substation, and its implementation in the specified CAD system. The developed algorithm for determining the economically viable options for the substation switchgear scheme meets the requirements of the norms and rules for the design of these power industry facilities. The results of the work are applicable as an automated workstation of the electrical engineer of a design organization.

Keywords

Computer-aided design, techno-economic justification, accounts, capital investment, supply interruption costs, escalation, objective function, optimization, discounted costs.

Evgeniya A. Panova

Ph.D. (Engineering), Associate Professor, Electric Power Supply of Industrial Enterprises Department, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID: https://orcid.org/0000-0001-9392-3346.

Aleksandr S. Irikhov

Student, Electric Power Supply of Industrial Enterprises Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..

Irina A. Dubina

Assistant Professor, Electric Power Supply of Industrial Enterprises Department, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.

Nikolay T. Patshin

Ph.D. (Engineering), Associate Professor, Electric Power Supply of Industrial Enterprises Department, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.

1. Belyaev L.S., Marchenko O.V., Filippov S.P., Solomin S.V., Stepanova T.B., Kokorin A.L. World energy and transition to sustainable development. Boston/Dordrecht/London, Kluwer Academic Publ., 2002. 276 p.

2. Häfele W., Program Leader. Energy in a finite world: a global systems analysis. Cambridge, Massachusetts: Ballinger Publ. Comp., 1981.

3. Stepanov V.S., Suslov K.V., Chebotnyagin L.M., Moskalenko N.S., Styczynski Z.A. The market approach of demand management in the power system. IEEE Pes Innovative Smart Grid Technologies Conference Europe, 2012. DOI: 10.1109/ISGTEurope.2012.6465747

4. Eroshenko S.A., Samoylenko V.O., Pazderin A.V., Bannykh P.Y. Power system zoning for distributed generation implementation forecasting. 2016 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2016, 2016, DOI: 10.1109/RTUCON.2016.7763100.

5. Idelchik V.I. Elektricheskie sistemy i seti: ucheb.dlya vuzov [Electrical systems and networks: textbooks for universities]. Moscow, Energoatomizdat Publ., 1989. 592 p. (In Russian)

6. Karapetyan I.G., Fajbisovich D.L., Shapiro I.M. Spravochnik po proektirovaniyu elektricheskih setej [Handbook of electrical network design]. Moscow, ENAS Publ., 2012, 376 p. (In Russian)

7. Karaev R. I., Volobrinskij S. D., Kovalev N.N. Elektricheskie seti i energosistemy: uchebnik dlya vuzov zh.-d. transporta [Electrical networks and power systems: a textbook for universities of railway transport]. Moscow, Transport Publ., 1988, 326 p. (In Russian)

8. Gerasimenko, A.A., Fedin V.T. Peredacha i raspredelenie elektricheskoj energii [Transmission and distribution of electrical energy]. Moscow, Feniks Publ., 2008. 715 p. (In Russian)

9. Gerkusov A.A., Makarov V.M. Feasibility study of the choice of parameters and operating modes of the designed power lines. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. [Bulletin of the Ivanovo State energy University], 2016, no. 2, pp. 66-73. (In Russian)

10. Burlov YU.A. Feasibility study on the use of 6–220 kV package transformer substations. Radioelektronika, elektrotekhnika i energetika [Radio electronics, electrical engineering and power engineering], 2017, no. 3 (448), p. 341. (In Russian)

11. Varganova A.V. Tekhniko-ekonomicheskie raschety v elektroenergetike: ucheb.posobie [Technical and economic calculations in the electric power industry: textbook]. Magnitogorsk, Nosov Magnitogorsk State Technical University Publ., 2016, 57 p.

12. Horolsky V.YA., Taranov M.A., Petrov D.V. Tekhniko-ekonomicheskie raschety raspredelitelnyh elektricheskih setej: ucheb.posobie [Technical and economic calculations of distribution electrical networks: study guide.]. Stavropol, Stavropol State Agrarian University Publ., 2010, 108 p. (In Russian)

13. Horolsky V.YA., Taranov M.A., Petrov D.V. Tekhniko-ekonomicheskaya effektivnost modernizacii raspredelitelnyh elektricheskih setej: ucheb.posobie [Technical and economic efficiency upgrade of electricity distribution networks]. Stavropol, Stavropol State Agrarian University Publ., 2010, 132 p. (In Russian)

14. Gulidov S.S. Technological characteristics of agricultural electric networks. Vestnik Moskovskogo gosudarstvennogo agroinzhenernogo universiteta im. V.P. Goryachkina [Bulletin of the Moscow State Agro-engineering University named after V.P. Goryachkin], 2009, no. 8-1 (39), pp. 100-101. (In Russian)

15. Stalovich V.V., Radkevich V.N. Technical and Economic Assessment of 6-10/0.4 kV Transformer Sub-Stations with Various Types of High-Voltage Switchgear. Energetika [Power industry], 2011, no. 3, pp. 26-40. (In Russian)

16. Khramshin T.R., Abdulveleev I.R., Kornilov G.P., Krubcov D.S. Electromagnetic compatibility of high power statcom in asymmetrical conditions. 2015 International Siberian Conference on Control and Communications, SIBCON – Proceedings, 2015. DOI: 10.1109/SIBCON.2015.7146966.

17. Leshchinskaya T.B., Knyazev V.V. Multicriteria estimation of a technical and economic status of distributive electrical networks. Vestnik Moskovskogo gosudarstvennogo agroinzhenernogo universiteta im. V.P. Goryachkina [Bulletin of the Moscow State Agroengineering University named after V.P. Goryachkin], 2010, no. 2 (41), pp. 14-19. (In Russian)

18. Lachkov G.G. On evaluation criteria for backbone electrical network development variants. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2018, no. 2 (133), pp. 123-130. (In Russian)

19. Bliznyuk D.I., Plyasunov A.O., Khalyasmaa A.I. Economical comparison of power transmissions for Ural - Siberia connection. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta [Bulletin of the South Ural State University], 2014, no. 4, pp. 27-30. (In Russian)

20. Trubicyn V.N., Neklepaev B.N. Tekhniko-ekonomicheskoe obosnovanie vybora strukturnyh skhem i skhem raspredelitel'nyh ustrojstv elektrostancij [Feasibility study of the choice of structural diagrams and distribution devices of power plants]. Moscow, MEI (TU) Publ., 2004. 46 p. (In Russian)

21. Malinina T.V. The problem of choice of the unit cost indicators of energy equipment in terms of inflation. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta [St. Petersburg State Polytechnic University Journal of Engineering Science and Technology], 2013, no. 1-2 (163), pp. 61-64. (In Russian)

22. Varganova A.V., Panova E.A., Hatyushina T.V., Kononenko V.S., Bagaeva H.M.; ORU CAD [ORU CAD]. Software registration RF, no. 2018618175, 2018.

23. Varganova A.V., Panova E.A., Hatyushina T.V., Kononenko V.S., Bagaeva H.M. Development of Electrical Equipment Database of 35-220 kV for "ORU CAD". Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2018, no. 2 (39), pp. 28-33.