download PDF

Abstract

The article shows a scheme of a two-link converter on the basis of a three-level active front-end and voltage source inverter incorporated into a high power electric drive. The authors considered the main ways to generate an output voltage of the inverter by means of pulse-width modulation. The basic operating principles of three-level NPC-inverter space vector PWM were considered including the generation of the output voltage vector. The article describes the formula to calculate the factors of length and turn-on time of monitoring keys, as well as the relationship between the changes in the duty cycle and the angle of the given vector for various values of the modulation index. The paper proposed standard switching sequence templates. It is of interest to produce an in-depth investigation of the proposed algorithms forming the inverter output voltage with the help of mathematical modeling, which will be done in future.

Keywords

Three-level NPC-inverter, space vector pulse-width modulation, switching sequence.

Il'dar R. Abdulveleev

Post-graduate student, Electric Power Supply of Industrial Enterprises Department, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.

Timur R. Khramshin

Ph.D. (Eng.), Associate Professor, Electric Power Supply of Industrial Enterprises Department, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.

Gennadiy P. Kornilov

D.Sc (Eng.), Professor, Head of the department of electric power supply of industrial enterprises, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..

Gennadiy V. Nikiforov

D.Sc (Eng.), chairman of board of directors, Magnitogorskgazstroy LLC, Magnitogorsk, Russia.

1. Abdulveleev I.R., Khramshin T.R., Kornilov G.P. Analysis of Strategies of Modulation Voltage of the Active Front End Based on the Modular Multilevel Converters. Vestnik YuUrGU. Seriya: Energetika [Bulletin of the South Ural State University. Ser. Power Engineering], 2015, vol. 15, pp. 25-36. (In Russian). doi: 10.14529/power150304

2. Rodrigeuez J., Lai J.S., Peng F.Z. Multilevel Inverters: A Survey of Topologies, Controls, and Applications. IEEE Transactions on Industrial Electronics, 2002, vol. 49, no. 4, pp. 724-738.

3. Abdulveleev I.R., Khramshin T.R., Kornilov G.P., Krubcov D.S. Electromagnetic Compatibility of High Power STATCOM in Asymmetrical Conditions, 2015 International Siberian Conference on Control and Communications (SIBCON), pp. 1-6. doi: 10.1109/SIBCON.2015.7146966

4. Khramshin T.R., Abdulveleev I.R., Kornilov G.P. EMC Powerful STATCOMs with unbalanced conditions of electric supply grid. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal [Russian Internet Journal of Electrical Engineering], 2015, vol. 2, no.2, pp. 40-46. (In Russian). doi: 10.14529/power150304

5. Walczyna A.M., Hill R.J. Space Vector PWM Strategy for 3-Level Inverters With Direct Self-Controls. Fifth European Conference on Power Electronics and Applications, 1993, vol.4, pp. 152-157.

6. Lui H.L., Choi N.S., Cho G.H. DSP Based Space Vector PWM for Three-Level Inverter with DC-Link Voltage Balancing, 1991 International Conference on Industrial Electronics, Control and Instrumentation (IECON ‘91), 1991, vol.1, pp. 197-203.

7. Lui H.L., Choi N.S., Cho G.H. DSP Based Space Vector PWM for Three-Level Inverter with DC-Link Voltage Balancing, 1991 International Conference on Industrial Electronics, Control and Instrumentation (IECON ‘91), 1991, vol.1, pp. 197-203.

8. Busquets-Monge S., Bordonau J., Boroyevich D., Somavilla S. The Nearest Three Virtual Space Vector PWM – A Modulation for the Comprehensive Neutral-Point Balancing in the Three-Level NPC Inverter. IEEE Power Electronics Letters, 2004, vol. 2, no. 1, pp. 11-15.

9. Busquets-Monge S., Somavilla S., Bordonau J., Boroyevich D. The Capacitor Voltage Balance for the Neutral-Point-Clamped Converter using the Virtual Space Vector Concept With Optimized Spectral Performance. IEEE Transactions on Power Electronics, 2007, vol. 22, no. 4, pp. 1128-1135.

10. Yamanaka K., Hava A.M., Kirino H., Tanaka Y., Koga N., Kume T. A Novel Neutral Point Potential Stabilization Technique Using the Information of Output Current Polarities and Voltage Vector. IEEE Transactions on Industry Applications, 2002, vol. 38, no. 6, pp. 1572-1580.

11. Das S., Narayanan G. Novel Swithcing Sequences for a Space-Vector-Modulated Three-Level Inverter. IEEE Transactions on Industrial Electronics, 2012, vol. 59, no. 3, pp. 1477-1487.

12. Khramshin T.R., Khramshin R.R., Kornilov G.P. Computation of electromagnetic processes in the three-phase double stage voltage inverter. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2010, no. 1, pp. 212. (In Russian)

13. Khramshin T.R., Khramshin R.R., Kornilov G.P., Krubtsov D.S. Generation of phase voltages of four-level frequency converter. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2011, no. 1, pp. 174-181. (In Russian)