Abstract
One of the most relevant directions of underground pipelines operation terms extension is the use of cathodic protection (CP). The principle of cathodic protection consists in the shift of the protected construction metal potential to a negative side with regard to the potential of its environment. In the process of the pipeline operation the irreversible changes of isolation properties, having the impact on the CP efficiency, occur. In this regard the information on the current state of isolation is a necessary factor of functioning of CP. In practice the electric parameters control measurements technology is used. The data obtained require an adequate interpretation for the estimation of the pipeline isolation current state on the concrete section. In this work computer modeling methods are used to solve the problem described. The analysis of numerical results makes it possible to conclude that this approach could be applied for the solution of the tasks connected with interpretation of control measurements data for the underground pipelines CP.
Keywords
Computer simulation, electric field, cathodic protection, interpretation of measurement results, method of fictitious sources, underground pipeline, computing experiment.
1. Glazov N.P. Podzemnaya korroziya truboprovodov, eye prognozirovanie i diagnostika [Underground Corrosion of Pipelines, its Forecasting and Diagnostics], N.P. Glazov. Мoscow: Gazprom, 1994. – 92 p.
2. Tkachenko V.N. Analiz polya tokov katodnoy zaschity truboprovodnoy seti [Analysis of Current Fields of Pipeline Cathodic Protection], V.N. Tkachenko, Metal protection, 2006, Vol. 42, no.5, pp.132–135.
3. Bolotnov A.M., Khisametdinov F.Z., Valeev A.A. Issledovanie sostoyaniya izolyatsii truboprovoda po dannym naturnykh izmereniy elektricheskogo polya katodnoy zaschity [Investigation of Pipeline Isolation State by Data of Field Measurements of Cathodic Protection Electric Field], Implementation of the Federal State educational standard in educational institutions: Proceedings of IV All-Russian scientific conference, Sibay, RITS Bash GU, 2015, pp. 45–52.
4. Ilyun V.P. Chislennye metody resheniya zadach elektrofiziki [Numerical Solutions to Problems of Electrophysics], Moscow, Science, 1985, 336 p.
5. Bolotnov A.M., Glazov N.P., Kiselev V.D., Khisametdinov F.Z. Matematicheskoe modelirovanie i chislennoe issledovanie elektricheskikh poley v sistemakh s protyazhennymi elektrodami [Mathematical Modeling and Computational Investigation of Electric Fields in Systems with Extended Electrodes], Bulletin of Bashkir university, 2006, no. 2, pp. 17–21.
6. Bolotnov A.M., Glazov N.N., Glazov N.P., Shamshetdinov K.L., Kiselyev V.D. Matematicheskaya model i algoritm pascheta elektricheskogo polya katodnoy zaschity truboprovoda protyazhennymi anodami [Mathematical Model and Algorithm of Calculation of Pipeline Cathodic Protection Electric Field by Extended Electrodes], Physicochemistry of surface and protection of materials, 2008, vol.44, no.4, pp. 438–441.
7. Bolotnov A.M., Garifullina S.R., Glazov N.N., Glazov N.P., Bashaev M.A. Kompyuternoe modelirovanie elektricheskikh poley v sistemakh katodnoy zaschity truboprovodov [Computer Modeling of Electric Fields in Systems of Pipeline Cathodic Protection], Bulletin of computer and information technologies, 2009, no.5, pp. 27–32.
8. Shimoni K. Teoreticheskaya elektrotekhnika [Theoretical Electrical Engineering], Moscow, Mir, 1964, 773 p.
9. Bolotnov A.M., Makhmutov M.M., Khisametdinov F.Z. Matematicheskoe modelirovanie teplovykh i elektricheskikh poley v tsilindricheslikh oblastyakh [Mathematical Modeling of Thermal and Electrical Fields in Cylindrical Domain], Bulletin of Bashkir University, 2005, vol.10, no. 3, pp. 18–22.
10. Bolotnov A.M., Khisametdinov F.Z. Kompyuternoe modelirovanie elektricheskikh poley katodnoy zaschity podzemnykh truboprovodov [Computer Modeling of Cathodic Protection Electric Fields for Underground Pipelines], Matematicheskoe i programmnoe obespechenie sistem v promyshlennoy i sotsialnoy sferakh [Mathematical Support and Software of Systems in Industrial and Social Spheres], 2015, vol.3, no.1, pp. 2-8.
11. Zamani N.G., Chuang J.M., Hsiung C.C. Numerical simulation of electrodeposition problems, Int. J. Numer. Meth. Eng., 1987, 24, no. 8, pp. 1479–1497.
12. Iwanow W., Bolotnow A. Matematyczne modelowanie i badanie anodowej elektrochemicznej ochrony przed korozja, XI Miedzynarodowa konferencja naukowo-techniczna «Bezpieczenstwo elektryczne», T.1. Wroclaw, 1997, pp. 389– 393.