DOI: 10.18503/2311-8318-2016-3(32)-15-19
Abstract
The article describes the technique of short-term prediction of electricity consumption of regional electric energy system (EES) based on an artificial neural network (ANN). This procedure developed on the basis of neural technologies gives prognosis evaluation of electrical energy for its transformation into the final product with minimum participation of people and provides improving the reliability of energy supply from the standpoint of uninterrupted supply of electrical energy, the decrease in the number of the breakdowns of production and the failures in electrical and technological part. For practical application of the method of prediction of electrical energy consumption on the basis of ANN, a computer program was developed to the calculate the forecast values of electricity consumption of the energy system. The program product provides automatic choice of optimum composition of input variables of the ANN that make it possible to raise the exactness of the prediction of the neural network model and to predict electricity consumption in any regional energy system.
Keywords
Electric energy system, consumption of electrical energy, artificial neural network, short-term prediction of electricity consumption.
1. Shumilova G.P., Gotman N.E., Startseva T.B. Prognozirovanie elektricheskikh nagruzok pri operativnom uprevlenii elektroenergeticheskimi sistemami na osnove neirosetevykh struktur [Prediction of Electrical Loads for Operative Management of Electrical Energy Systems Based on Neural Network Structures]. Yekaterinburg, UrO RАS Publ., 2008. 88 p.
2. Makoklyuev B.I. Analiz i planirovanie elektropotrebleniya [Analysis and Planning of Electricity Consumption]. Moscow, Energoatomizdat Publ., 2008. 296 p.
3. Papkov B.V. Nadezhnost i effektivnost elektrosnabzheniya [Reliability and Efficiency of Electrical Supply]. Textbook. – Nizhny Novgorod, Nizhny Novgorod State Technical University, 1996. 210 p.
4. Benn D.V., Farmer E.D. Review of Methods of Short-term Prediction in Electrical Power Engineering. Sravnitel'nye modeli prognozirovaniya elektricheskoy nagruzki energosistem [Comparative models of prediction of electrical load of energy systems]. Moscow, Energoatomizdat Publ., 1987. 260 p.
5. Benn D.V., Farmer E.D. Sravnitelnye modeli prognozirovaniya elektricheskoy nagruzki [Comparative Models of Prediction of Electrical Load]. Moscow, Energoatomizdat Publ., 1987. 200 p.
6. Haykin Simon. Neyronnye seti: polnyy kurs [Neural networks. Complete course.]. 2nd ed. Moscow, Viliyams Publ., 2006. 1104 p.
7. Alekseeva I.Y. Kratkosrochnoe prognozirovanie elektropotrebleniya v elektroenergeticheskikh sistemakh s ispolzovaniem iskusstvennykh neironnykh setey. Kand. Diss. [Short-term Prediction of Electricity Consumption in Electrical Energy Systems with Application of Artificial Neural Networks. PhD(Eng.). Diss.]. Ivanovo, 2014. 20 p.
8. Alekseeva I.Y., Vedernikov A.S., Skripachev M.O. Prediction of Electrical Consumption by the Method of Artificial Neural Networks. Vestnik SamGTU. Ser. Tekhnicheskie nauki [Vestnik of Samara State Technical University. Technical Sciences Series], 2010, no.4(27), pp. 135-138. (in Russian).
9. Alekseeva I.Y., Vedernikov A.S. Definition of the Set of Input Variables of Artificial Neural Network for Short-term Predicting of Electricity Consumption. Elektroenergetika glazami molodezhi: nauch. trudy mezhdunar. nauch.-tekhn. konferentsii [Electrical power engineering in eyes of young people. Scientific works of international scientific and technical conference]. Samara, 2011, vol.1, pp. 253-255. (in Russian).
10. Shneyder A.M., Takenava T., Shiffman D.A. Daily Load Predicting of EES Based on Projected Temperature. Sravnitel'nye modeli prognozirovaniya elektricheskoy nagruzki energosistem [Comparative models of the prediction of electrical load of energy systems]. Moscow, Energoatomizdat Publ., 1987. 260 p.
11. Kendall M., Stiyart A. Multi-dimensional statistic analysis and time series. Moscow, Science Publ., 1976. 540 p.
12. Rodiygina S.V. Kratkosrochnoe prognozirovanie elektricheskikh nagruzok promyshlennykh predpriyatiy s primeneniem intellektualnykh informatsionnykh tehnologiy. Kand. Diss. [Short-term Prediction of Electrical Loads of Industrial Enterprises with Application of Intelligent Information Technologies. PhD(Eng.). Diss.]. Novosibirsk, 2010. 20 p.
13. Voronov I.V. Prognozirovanie elektropotrebleniya promyshlennykh predpriyatiy s pomoschyu iskusstvennykh neyronnykh setey. Kand. Diss. [Prediction of Electricity Consumption of Industrial Enterprises with the Help of Artificial Neural Networks. PhD(Eng.). Diss.]. Kemerovo, 2010. 20 p.
14. Alekseeva I.Y., Stepanov V.P., Vedernikov A.S. Saarand’s Method in the Study of Dynamics of Household Energy Consumption the Population of the City of Chapayevsk in the Samara Region. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical systems and complexes], 2008, no.15, pp. 196-201.
15. Alekseeva I.Y., Stepanov V.P., Vedernikov A.S. Method of Exponentional Smoothing of Trend Lines of Time Series in Combination with the Method of Seasonality Indices for Short-term Predicting of Electricity Consumption. Vestnik SamGTU. Ser. Tekhnicheskie nauki [Vestnik of Samara State Technical University. Technical Sciences Series], 2008, pp.137-143.