download PDF

Abstract

The aim of this paper is to develop a new way to control active power rectifier (APR) for Reactive Power Compensation (RPC) in a power network. The emphasis of this research was on the theoretical analysis of controllability of the active, reactive and full power in the APR system - power network. On the basis of received results, we can make a conclusion about reactive power regulation with help of APR: it is possible with the use of a new automated control system (ACS). The most important thing is to use this new ACS, when the installations with a non-linear load work in parallel near with the consumption point of current. It allows to decrease the value of input reactive power from the electrical substation and to improve the technical-and-economic indexes of the electrical power supply system in whole for a factory.

Keywords

Active power rectifier; feedback-control system; power factor correction; reactive power compensation; industrial smart grid.

Belyj Aleksej Vladimirovich – Ph.D.(Eng.), associate professor of the department of Automated Electrical Drive and Mechatronics, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Maklakov Alexander Sergeyevich – post-graduate student of the department of Mechatronics, South Ural State University (National Research University), Chelyabinsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Radionov Andrej Alexandrovich – D.Sc.(Eng.), Professor, Vice Rector for Academic affairs of South Ural state university (National Research University), Chelyabinsk, Russia. Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

1. Khramshin T.R., Abdulveleev I.R., Kornilov G.P. Matematicheskaya model' silovoj skhemy moshchnogo STATKOMa [Mathematical Model of the Power Circuit of STATCOM]. Elektrotekhnika: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Electrical Engineering]. 2015. vol. 2, no. 1, pp. 18-46.

2. J. Rodriguez, S. Bernet, B. Wu, J. Pontt, and S. Kouro Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 2930–2945, Dec. 2007.

3. J. Rodriguez, J.-S. Lai, and F.Z. Peng. Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, Aug. 2002.

4. Maklakov A.S., Analiz raboty aktivnogo vypryamitelya napryazheniya v rezhimah kompensacii reaktivnoj moshchnosti [Analysis of active power rectifier work in modes of reactive power compensation]. Mashinostroenie: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Industrial Engineering]. 2013, no. 1, pp. 43-50.

5. Remus Teodorescu, Marco Liserre, Pedro Rodrıguez. Grid converters for photovoltaic and wind power systems. UK: John Wiley & Sons, Ltd., p. 398. 2011.

6. Maklakov A.S., Radionov A.A., Issledovanie vektornoj SHIM s razlichnymi tablicami pereklyucheniya silovyh klyuchej trekhurovnevogo preobrazovatelya [Research of vector PWM with different selection tables of three level converter]. Elektrotekhnika: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Electrical Engineering]. 2015, vol. 2, no. 1, pp. 30-37.

7. A. Nabae, I. Takahashi, and H. Akagi. A neutralpoint clamped PWM inverter. IEEE Trans. Ind. Applicat., vol. 1A-17, no. 5, pp. 518–523, Sept. 1981.

8. L.G. Franquelo, J. Napoles, R. Portillo, J.I. Leon, and M. Aguirre. A flexible selective harmonic mitigation technique to meet grid codes in three level PWM converters. IEEE Trans. Ind. Electron., vol.54, no.6, pp. 3022–3029, Dec. 2007.

9. Hramshin T.R., Krubtsov D.S., Kornilov G.P. Otsenka metodov shirotno-impul'snoj modulyacii napryazheniya aktivnyh vypryamitelej prokatnyh stanov [Evaluation of PWM-methods of active rectifiers voltage of rolling mills]. Mashinostroenie: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Industrial Engineering]. 2013, no2., pp. 48-52.

10. Khramshin T.R., Kornilov G.P., Nikolaev A.A., Khramshin R.R., Krubtsov D.S. Issledovaniye vozdeystviya aktivnykh vypryamiteley bolshoy moshchnosti na pitayushchuyu set [Investigation of the influence high power active rectifiers to the power network]. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta [Bulletin of Ivanovo State Power Engineeting University]. 2013, no. 1, pp. 80-83.

11. Khramshin T.R., Krubtsov D.S., Kornilov G.P. Metody shirotno-impul'snoj modulyacii moshchnyh aktivnyh vypryamitelej pri nesimmetrii napryazheniya [Methods PWM of large power active rectifier under unbalanced voltage operating conditions]. Mashinostroenie: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Industrial Engineering]. 2014, vol. 2, no. 4, pp. 7-13.

12. Khramshin T.R., Krubtsov D.S., Kornilov G.P. Matematicheskaya model' silovoj skhemy glavnyh elektroprivodov prokatnyh stanov [A Mathematical Model of the Power Circuit of Main Electric Drives of Rolling Mills]. Elektrotekhnika: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Electrical Engineering]. 2014, Vol.1, no. 1, pp. 3-7.

13. Maklakov A.S., Radionov A.A., Vliyanie na set' tryohfaznogo mostovogo dvuhurovnevogo aktivnogo vypryamitelya napryazheniya pri razlichnyh vidah SHIM [Influence of AFE rectifier with different types of PWM on supply power]. Mashinostroenie: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Industrial Engineering]. 2013, no. 2, pp. 40–47.

14. Maklakov A.S., Gasiyarov V.R., Belyi А.V. Energosberegayushchij elektroprivod na baze dvuhzvennogo preobrazovatelya chastoty s aktivnym vypryamitelem i avtonomnym invertorom napryazheniya [Energy-saving electric drive on the basis of back to back converter]. Elektrotekhnika: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Electrical Engineering]. 2014, no. 1, pp. 23-30.

15. Leopoldo G. Franquelo, Jose Rodríguez, Jose I. Leon, Samir Kouro, Ramon Portillo and Maria A.M. Prats. The age of multilevel converters arrives. IEEE industrial electronics magazine. pp. 28–39. June 2008.

16. Kornilov G.P., Nikolaev A.A., Khramshin T.R., Murzikov A.A. Modelirovaniye elektrotekhnicheskikh kompleksov metallurgicheskikh predpriyatiy: ucheb. posobiye [Simulation of electrical systems of metallurgical enterprises]. Magnitogorsk, 2012, 235 p.

17. Shreyner R.T. Matematicheskoye modelirovaniye elektroprivodov peremennogo toka s poluprovodnikovymi preobrazovatelyami chastoty [Mathematical modeling of AC drives based on semiconductor frequency converters], Yekaterinburg: UrO RAN, 2010, 654 p.

18. Hramshin T.R., Krubtsov D.S., Kornilov G.P. Matematicheskaya model' aktivnogo vypryamitelya v nesimmetrichnyh rezhimah raboty [Mathematical model of the active rectifier under unbalanced voltage operating conditions]. Elektrotekhnika: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Electrical Engineering]. Vol. 1, no. 2, pp. 3-9, 2014.

19. Maklakov A.S., Imitacionnoe modelirovanie glavnogo elektroprivoda prokatnoj kleti tolstolistovogo stana 5000 [Simulation of the main electric drive of the 5000 plate mill rolling stand]. Mashinostroenie: setevoj elektronnyj nauchnyj zhurnal [Russian Internet Journal of Industrial Engineering]. 2014, no.3. pp. 16-25.