Abstract

Full Text

To carry out various exploration and prospecting works, shallow probing of the near-surface part of the earth crust is widely used. Therefore, increasing the reliability of shallow sounding results is an urgent task. The purpose of the research work is to develop a georadar antenna module with improved technical capabilities. The operating features of subsurface sensing systems using ground penetrating radars are considered. An analysis of the antennas used in georadars, which is the basic unit that determines their operational capabilities and characteristics, has been carried out. A new modified type of EH antenna has been developed. To significantly narrow the directional pattern of a vibrator EH antenna, relatively long hollow conductive cylinders are used as its structural elements, connected in series with extension inductors, which in turn ensures radiation of an electromagnetic field of maximum intensity already in the near zone of the surrounding space. The used receiving magnetic antenna with a core made of dielectric ferrimagnetic material, consisting of two extension inductors, has spatial isolation in the primary field relative to the radiating vibrator antenna. The operating principle of the proposed antenna module is described and theoretically justified. It is shown that the ferrimagnetic core serves not only to amplify the secondary (re-radiated) electromagnetic field, but also as an additional element for fine-tuning the operating modes of the EH antenna. A design option for a new antenna module for ground penetrating radar is proposed. The proposed EH antenna ensures maximum conversion of the E and H fields into the radiated primary field, and the use of a fluxgate as a receiving antenna significantly increases the sensitivity of the antenna module as a whole.

Keywords

shallow sounding, subsurface object, ground penetrating radar, broadband signal, antenna module, transmitting and receiving antennas, differential fluxgate

Ivan V. Bryakin D.Sc. (Engineering), Professor, Head of the Information and Measuring System Laboratory, Institute of Mechanical Engineering and Automation, National Academy of Sciences of the Kyrgyz Republic, Bishkek, Kyrgyz Republic, This email address is being protected from spambots. You need JavaScript enabled to view it., https://orcid.org/0000-0001-7463-8072

Igor V. Bochkarev D.Sc. (Engineering), Professor, Department of Electrical Engineering, Power Faculty, Kyrgyz State Technical University named after I. Razzakov, Bishkek, Kyrgyz Republic, This email address is being protected from spambots. You need JavaScript enabled to view it., https://orcid.org/0000-0002-9873-9203

Vadim R. Khramshin D.Sc. (Engineering), Professor, Department of Industrial Power Supply, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., https://orcid.org/0000-0003-0972-2803

1. Khmelevskoy V.K., Gorbachev Yu.I., Kalinin A.V., Popov M.G., Seliverstov N.I., Shevnin V.A. Geofizicheskie metody issledovaniy [Geophysical research methods]. Petropavlovsk-Kamchatsky, KSPU Publ., 2004. 232 p. (In Russian)

2. Brooks M., Hill I., Kearey P. An introduction to geophysical exploration. Blackwell science Ltd, 2002. 280 p.

3. Agafonov Yu.A., Buddo I.V., Vakhromeev A.G., Gomulskiy V.V., Guseinov R.G., Emelyanov V.S., Ilyin A.I., Kompaniets S.V., Misyurkeeva N.V., Murzina E.V., Pospeev A.V., Seminskiy I.K., Sen E.A., Surov L.V., Tokareva O.V., Sharlov M.V., Sharlov R.V. Sovremennaya prakticheskaya elektrorazvedka [Modern practical electrical prospecting]. Novosibirsk, Academic publication Geo, 2018. 231 p. (In Russian)

4. Pettinelli E., Barone P. M., Mattei E., Lauro S.E. Radio wave techniques for non-destructive archaeological investigations. Contemporary Physics. 2011. 52(2).Pp. 121-130. doi: 10.1080/00107514.2010.545208

5. Zhurbin I.V. Geofizika v arkheologii: metody, tekhnologiya i rezultaty primeneniya [Geophysics in archeology: methods, technology and application results]. Izhevsk, Udmurt Institute of History, Language and Literature of the Ural Branch of the Russian Academy of Sciences, 2004. 152 p. (In Russian)

6. Zhdanov M.S. Geofizicheskaya elektromagnitnaya teoriya i metody [Geophysical electromagnetic theory and methods]. Moscow, Scientific world Publ., 2012. 680 p. (In Russian)

7. Balkov E.V., Karin Yu.G., Panin G.L., Fadeev D.I. Shallow electromagnetic profiling and sounding: current state and promising developments. 12th Conference and Exhibition Engineering Geophysics, Anapa, Russia, 25-29 Apr. 2016. doi: 10.3997/2214-4609.201600295. (In Russian)

8. Balkov E.V., Fadeev D.I. Review of modern hardware and software for shallow electromagnetic sounding in the frequency domain. Geofizicheskie tekhnologii [Russian Journal of Geophysical Technologies], 2021, no. 1. pp. 52-72. doi: 10.18303/2619-1563-2021-1-52 (In Russian)

9. Petrovsky A.D. Radiovolnovye metody v podzemnoy geofizike [Radio wave methods in underground geophysics]. Moscow, TsNIGRI Publ., 2001. 290 p. (In Russian)

10. Alexandrov P.N. Teoreticheskie osnovy georadarnogo metoda [Theoretical foundations of the georadar method]. Moscow, Fizmatlit Publ., 2016. 112 p. (In Russian)

11. Jol H.M. Ground Penetrating Radar: Theory and Applications. Elsevier Science, 2009. 508 p.

12. Grinev A.Yu., Temchenko V.S., Bagno D.V. Radary podpoverkhnostnogo zondirovaniya. Monitoring i diagnostika sred i obyektov. [Subsurface sounding radars. Monitoring and diagnostics of environments and objects]. Moscow, Radio engineering Publ., 2013. 392 p. (In Russian)

13. Persico R. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing; Wiley-IEEE Press: New York, NY, USA, 2014. 392 p.

14. Bigman D.P. GPR Basics. A Handbook for Ground Penetrating Radar Users. CreateSpace Independent Publishing Platform, 2018. 134 р.

15. Hou F., Rui X., Fan X., Zhang H. Review of GPR Activities in Civil Infrastructures: Data Analysis and Applications. Remote Senssing. 2022. 14(23). 5972. doi: 10.3390/rs14235972

16. Efimova N.N., Daniliev S.M. Georadar studies of hydraulic engineering and transport structures. Zapiski Gornogo instituta [Journal of Mining Institute], 2007, vol. 173, pp. 60-62. (In Russian)

17. Kulizhnikov A.M. Assessment of soil condition using georadar methods. Dorogi i mosty [Roads and Bridges], 2016, issue 36/2, pp. 113-129. (In Russian)

18. Iftimie N., Savin A., Steigmann R., Dobrescu G. Underground Pipeline Identification into a Non-Destructive Case Study Based on Ground-Penetrating Radar Imaging. Remote Sensing. 2021. 13(17). 3494. doi:10.3390/rs13173494

19. Tosti F., Ferrante Ch. Using ground penetrating radar methods to investigate reinforced concrete structures. Surveys in Geophysics. 2020. 41(3). Pp. 485-530. doi: 10.1007/s10712-019-09565-5

20. Ivashov S.I., Bugaev A.S., Zhuravlev A.V., Razevig V.V., Chizh M.A., Ivashov A.I. Use of holographic subsurface radar methods for non-destructive testing of dielectric structures. Zhurnal tekhnicheskoy fiziki [Technical Physics], 2018, vol. 88, issue 2, pp. 268-275. (In Russian)

21. Mogilatov V.S. Impulsnaya elektrorazvedka [Pulse electrical prospecting]. Novosibirsk,NGU Publ., 2002. 208 p. (In Russian)

22. Maruddani B., Sandi E. The Development of Ground Penetrating Radar (GPR) Data Processing. International Journal of Machine Learning and Computing. Vol. 9. No. 9(6). doi: 10.18178/ijmlc.2019.9.6.871

23. Sun M., Pan J., Le Bastard C., Wang Y., Li J. Advanced Signal Processing Methods for Ground-Penetrating Radar: Applications to civil engineering. IEEE Signal Processing Magazine. 2019. 36. Pp. 74-84. doi: 10.1109/MSP.2019.2900454

24. Belashev B.Z., Nilov M.Yu. Automated processing of georadar data. Trudy Karelskogo nauchnogo tsentra RAN [Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences], 2020, no. 7. pp. 19–27. doi: 10.17076/mat122 (In Russian)

25. Bryakin I.V. Features of georadar sensing. Problemy avtomatiki i upravleniya [Automation and control problems], 2013, no. 2, pp. 111-121. (In Russian)

26. Immoreev I.Ya. Ultra-wideband radars. Features and capabilities. Radiotekhnika i elektronika [Radio engineering and electronics]. 2009. Vol. 54, no. 1. pp. 5-31. (In Russian)

27. Efimov A.V. Analysis of the state of affairs in the field of creating ultra-wideband SAR. Vserossiyskaya otkrytaya nauchnaya konferentsiya «Sovremennye problemy distantsionnogo zondirovaniya, radiolokatsii, rasprostraneniya i difraktsii voln» [All-Russian open scientific conference "Modern problems of remote sensing, radar, wave propagation and diffraction"]. Murom, 2023. pp. 353-362. doi: 10.24412/2304-0297-2023-1-353-362 (In Russian)

28. Bryakin I. V., Bochkarev I. V., Khramshin V. R. New Method of Radio Detection and Location for Shallow Geophysics. International Russian Automation Conference (RusAutoCon). IEEE, 2023. Рр. 1109-1114. doi: 10.1109/RusAutoCon58002.2023.10272903

29. Shiva A.V.N.R.S., Elleithy K., Abdelfattah E. Improved monostatic pulse radar design using ultra wide band for range estimation. Annual Connecticut Conference on Industrial Electronics, Technology & Automation (CT-IETA). IEEE, 2016. Pp. 1-7. doi: 10.1109/CT-IETA.2016.7868245

30. Zadorozhny V.V., Lomantsov A.A., Priymakov S.N. GPR with an antenna system based on spiral slot antennas with circular polarization. Obshchie voprosy radioelektroniki [General issues of radio electronics], 2017, vol. 1(25), pp. 115-122. (In Russian)

31. Khakiev Z. B., Karpov A. Yu., Bakharev A. A., Yavna V. A. Narrowly directional antenna units of georadars. Geomodel 2007 - 9th EAGE science and applied research conference on oil and gas geological exploration and development.European Association of Geoscientists & Engineers, 2007. doi: 10.3997/2214-4609.201405433 (In Russian)

32. Shao J., Fang G., Fan J., Ji Y., Yin H. TEM horn antenna loaded with absorbing mate-rial for GPR applications. IEEE Antennas Wirel. Propag. Lett. 2014. Vol. 13. 523-527. doi: 10.1109/LAWP.2014.2311436

33. Dang H.B., Quan C.T. Phased array radar and MIMO: Characteristics of phased array radar and MIMO radar. Mezhdunarodnyi nauchno-issledovatelskiy zhurnal [International Research Journal], 2021, no. 3(105), Part 1, pp. 44-48. doi.org/10.23670/IRJ.2021.105.3.007 (In Russian)

34. Bryakin I.V. Combined antenna unit for georadar. Problemy avtomatiki i upravleniya [Problems of automation and control], 2015, no. 2(29), pp. 64-74. (In Russian)

35. Bryakin I.V., Bochkarev I.V., Khramshin V.R. Development of New Antenna Assembly for Georadar. International Russian Automation Conference (RusAutoCon). IEEE, 2023. Рр. 1104-1108. doi: 10.1109/RusAutoCon58002.2023.10272897

36. Kondratyev B. P. Teoriya potentsiala. Novye metody i zadachi s resheniyami [Theory of potential. New methods and problems with solutions]. Moscow, Mir Publ., 2007. 512 p. (In Russian)

37. Bryakin I.V. Modulator based on S-Antenna. Vestnik KRSU [Herald of KRSU], 2015, vol. 15, no. 9, pp. 112-116. (In Russian)

38. Nikolaev G.V. Neizvestnye tainy elektromagnetizma i svobodnaya energiya. Novye kontseptsii fizicheskogo mira [Unknown secrets of electromagnetism and free energy. New concepts of the physical world]. Tomsk, LLC "NTC NED" Publ., 2002. 150 p. (In Russian)

39. Afanasyev Yu.V. Ferrozondovye pribory [Fluxgate devices]. Leningrad, Energoatomizdat Publ., 1986. 188 p. (In Russian)

40. Wei S., Liao X., Zhang H., Pang J., Zhou Y. Recent Progress of Fluxgate Magnetic Sensors: Basic Research and Application. Sensors. 2021. No. 21(4). 1500. doi: 10.3390/s21041500

 

Bryakin I.V., Bochkarev I.V., Khramshin V.R. Development of Georadar Antenna Module for Shallow Exploration. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2024, no. 2(63), pp. 4-16. (In Russian). https://doi.org/10.18503/2311-8318-2024-2(63)-4-16