Abstract
Changing the characteristics of the hot blast stoves in the unit makes it necessary to correct the mode maps. The implementation of such a correction is episodic, and often the very value of the correction of the operation time periods of the hot blast stove unit is determined from the empirical experience of the technologist and is based on assumptions about the real state of the hot blast stove without evaluating the "history" of its operation. Such an approach to control does not allow for continuous maintenance of maximum efficiency of the hot blast stove unit and leads to a decrease in blast productivity, which affects the economic performance of the blast furnace. The article considers a control system that performs a continuous analysis of the condition of the hot blast stoves in the unit and corrects the time of the blowing period for each stove. Evaluation of the capabilities of the hot blast stove unit is performed using a linguistic variable, for which two terms are formed - "weak" and "strong" hot blast stove, which determine the ability of the hot blast stove to heat the blast for a given cycle time. Using fuzzy logic methods, taking into account the characteristics of a "weak" hot blast stove at the end of each operation cycle, the value of the blowing period correction for the entire unit is formed. Thus, the system allows for continuous correction of the mode map taking into account the changing characteristics of the hot blast stoves in the unit. The conducted calculation experiment with models of hot blast stoves with different characteristics showed that the transition from the original mode card with the same time of blowing periods to the new mode card occurred in 15 full cycles of the unit or in 37.5 hours. At the same time, the average temperature of the blast increased by 32.8 °C, and the minimum temperature of the hot blast from the "weak" hot blast stovesincreased by 133.6 °C.
Keywords
hot blast stove, fuzzy logic, mathematical model, heat transfer, mode map
1. Yusfin Ju.S. Priority problems of sinter and blast furnace production. Stal [Steel in Translation], 1993, no. 4, pp. 4-9. (In Russian)
2. Zetterholm J., Ji X., Sundelin B., Martin P.M., Wang C. Model Development of a Blast Furnace Stove. Energy Procedia, 2015, no. 75, pp. 1758–1765. doi.org/10.1016/j.egypro.2015.07.454
3. Shkljar F.R., Sovetkin V.L., Trofimov N.I., Malkin V.M., Babushkin N.M., Kolodyazhnyy V.S. Optimization of thermal modes of hot blast stoves based on the economic criterion. Izvestija vuzov. Chernaja metallurgija [News of universities. Ferrous metallurgy], 1985, no. 8, pp. 113-115. (In Russian)
4. Solomentsev S.L., Sigmund V.K., Korshikov V.D., Basukinskiy S.M., Pukhov A.P. Simplified method for optimizing the operating modes of the hot blast stove unit Stal [Steel in Translation], 1986, no. 5, pp. 16-18. (In Russian)
5. Kondratyev G.V., Korshikova M.V. Improving the control efficiency of hot blast stove unit. Sbornik nauchnyh trudov Rossijskoy nauchno-tehnicheskoy konferentsii «Slavjanskie chtenija» [Collection of scientific papers of the Russian Scientific and Technical Conference "Slavic Readings"]. Lipetsk, 1999, pp. 87-90. (In Russian)
6. Onorin O.P., Spirin N.A., Terentyev B.L., Gileva L.Ju., Rybolovlev V.Ju., Kosachenko I.E., Lavrov V.V., Terentyev A.V. Kompyuternye metody modelirovanija domennogo protsessa. [Computer methods of blast furnace process modeling]. Yekaterinburg, USTU Publ., 2005. 301. p. (In Russian)
7. Yaroshenko Ju.G., Shvydkij V.S., Spirin N.A., Matyuhin V.I., Lavrov V.V. Teplofizicheskie osnovy teplovoj raboty metallurgicheskih sloevyh pechej i agregatov [Thermophysical fundamentals of thermal operation of metallurgical layer furnaces and aggregates]. Yekaterinburg, AMK «Den' RA»Publ., 2019. 464 p. (In Russian)
8. Menshikov R.I., Solomentsev S.L. Approximate method for calculating temperatures by height of hot blast stoves Izvestija vuzov. Chernaja metallurgija [Izvestiya. Ferrous Metallurgy], 1983, no.11, pp. 140-143. (In Russian)
9. Ryzhenkova A. A., Krivtsov A.Ju. Improving the efficiency of the hot blast stove unit. Sbornik materialov oblastnoj nauchno-tehnicheskoj konferentsii. [Collection of materials of the regional scientific and technical conference]. Lipetsk, LSTU Publ., 2019, pp. 168-171. (In Russian)
10. Parsunkin B.N., Andreev S.M., Ahmetov U.B. Optimizacij aupravlenija tehnologicheskimi processami v metallurgii [Optimization of process control in metallurgy]. Magnitogorsk, NMSTU Publ., 2009. 198 p. (In Russian)
11. Parsunkin B.N., Andreev S.M., Bondareva A.R., Samarina I.G., Mukhina E.Ju. Perspektivnoej ekstremalno – optimizirujushhee avtomaticheskoe upravlenie domennym processom [Promising extremely optimizing automatic control of the blast furnace process]. Magnitogorsk, NMSTU Publ., 2022. 304 p. (In Russian)
12. Shkljar F.R., Malkin V.M. Domennye vozduhonagrevateli (konstruktsija, teorija, rezhimyraboty [Hot blast stoves (design, theory, operating modes]. Moscow, Metallurgy Publ., 1982. 176 p. (In Russian)
13. Polyakov V.V. Resursosberezhenie v chernoj metallurgii [Resource saving in ferrous metallurgy]. Moscow, Mechanical engineering Publ., 1993, 320 p. (In Russian)
14. Shokul A.A., Lozovoj V.P., Sharkevich L.D. Blast furnace operation with blast heating up to 1200-1380 °C. Stal [Steel in Translation], 1983, no. 3, pp. 10-13. (In Russian)
15. Planka B. Increase in blast temperature in blast furnaces. Stal [Steel in Translation], 1985, no. 6, pp. 14-19. (In Russian)
16. Ryabchikov M.Ju. Sovershenstvovanie rezhimov raboty bloka domennyh vozduhonagrevatelej s celyu povyshenijaj effektivnosti processa nagreva dutya. Kand. Diss. [Improving the operating modes of the hot blast stove unit in order to increase the efficiency of the blast heating process. Kand. Diss.]. Magnitogorsk, 2005. 194 p. (In Russian)
17. Parsunkin B.N., Rjabchikov M.Ju, Andreev S.M. Avtomatizacija i optimizacija upravlenija teplovym rezhimom raboty bloka vozduhonagrevatelej domennoj pechi [Automation and optimization of thermal mode control of the hot blast stove unit]. Magnitogorsk, NMSTU Publ., 2009. 148 p. (In Russian)
18. Brodjuk V.Ju. Razrabotka i vnedrenie metodov kontrolja i povyshenijaj effektivnosti funkcionirovanija domennogo vozduhonagrevatelja v uslovijah ego dlitelnojj ekspluatacii. Kand. Diss. [Development and implementation of methods for monitoring and improving the efficiency of the functioning of a hot blast stove in conditions of its long-term operation. Kand. Diss.]. Lipetsk, 2001. 154 p. (In Russian)
19. Shackih Ju.V. Razrabotka i issledovanie metodov povyshenijaj effektivnosti energoispolzovanija v domennyh vozduhonagrevateljah. Kand. Diss. [Development and research of methods to improve the efficiency of energy use in hot blast stoves. Kand. Diss.]. Lipetsk, 2002. 164 p. (In Russian)
20. Kondratyev G.I. Razrabotka i issledovanie kompleksnyh metodov povyshenija effektivnosti ekspluatacii domennyh vozduhonagrevatelej. Kand. Diss. [Development and research of complex methods to improve the efficiency of hot blast stove operation. Kand. Diss.]. Lipetsk, 2002. 162 p. (In Russian)
21. Krivtsov A. Ju. Issledovanie i razrabotka metodov povyshenija effektivnosti rezhimov raboty domennyh voz-duhonagrevateley s uchetom ih individualnyh teplo-tehnicheskih harakteristik. Kand. Diss. [Research and development of methods for improving the efficiency of hot blast stoves, taking into account their individual thermal and technical characteristics. Kand. Diss.]. Lipetsk, 2007. 119 p. (In Russian)
22. Bjankin I.G. Issledovanie i optimizacija domennyh vozduhonagrevatelej s vnutrennej kameroj. Kand. Diss. [Research and optimization of hot blast stoves with an internal chamber. Kand. Diss.]. Lipetsk, 1991. 182 p. (In Russian)
23. Bjankin I.G., Krivtsov A.Ju., Korshikov V.D. On the issue of optimization of design, technological and operational parameters of hot blast stoves. Sovremennaja metallurgija novogo tysjacheletija: Mezhdunarodnyj sbornik nauchnyh trudov [An international collection of scientific papers "Modern metallurgy of the New Millennium"]. Lipetsk, LSTU Publ., 2015, pp. 289-293. (In Russian)
24. Chen M., Zhang Y. The Multi-model Predictive Control Method Research on the Outlet Temperature Control of Hot-Blast Stove. Magnetic Resonance of Semiconductors and Their Nanostructures. 2020, pp. 415–419. doi:10.1007/978-3-030-15235-2_62
25. Yang Y., Zhao X., Liu X. A Novel Exhaust Gas Temperature Prediction Method of Hot Blast Stove. 39th Chinese Control Conference. IEEE, 2020, pp. 5916-5921. doi:10.23919/CCC50068.2020.9189443
26. Ding H.Q., Yang C.-J., Song Z.-H. Application of mathematical model of combustion input and output of hot blast stove. Iron and Steel. 2016, vol. 51, pp. 16–21. doi:10.13228/j.boyuan.issn0449-749x.20150423
27. Zhang Q, Chen L., Zhao C. Numerical Simulation of Combustion and Air Supply Process and Optimal Design of Traditional Top Combustion Hot Blast Stoves. Steel research int. 2021, no. 92(2). doi:10.1002/srin.202000311
28. Koifman A., Simkin O., Klimov Y., Scherbakov S. Using of Intelligence Analysis of Technological Parameters Database for Implementation of Control Subsystem of Hot Blast Stoves Block ACS. Inf. Technol. Nanotechnol. 2021, vol. 2864, pp. 145–157. doi:10.32782/cmis/2864-13
29. Fujii A, Fujii N, Miyazaki H, Ito M, Honda M. Hot Stove Combustion Pattern Optimization. Special Issue on Systems, Instrumentation, and Control Technologies. 2019, no. 121, pp. 88–93.
30. Yang Y., Zhao X., Liu X. A novel echo state network and its application in temperature prediction of exhaust gas from hot blast stove. IEEE Transactions on Instrumentation and Measurement. 2020, vol. 69, pp. 9465–9476. doi:10.1109/TIM.2020.3003975
31. Novak V., Perfilieva I.,Mockor J. Mathematical Principles of Fuzzy Logic. Kluwer Academic Publisher, 1999. 517 p.
32. Andreev S.M., Logunova O.S., Parsunkin B.N., Polko P.G., Rjabchikov M.Ju., Rjabchikova E.S. Fuzzy control algorithm for synthesis of digital circuits for automatic stabilization of technological parameters. Avtomatizacija v promyshlennosti [Automation in industry], 2010, no. 11, pp. 32-37. (In Russian)
33. Hadzhinov A. S., Hadzhinov E. A., Tishhenko V. A. Mathematical modeling of the thermal operation of a hot blast stove. Vestnik Priazovskogo gosudarstvennogo tehnicheskogo universiteta [Bulletin of the Azov State Technical University], 2010, no. 20, pp. 154-159. (In Russian)
34. Dadios E.P. Fuzzy Logic Algorithms. Techniques and Implementations. InTech Publ., 2012. 294 p.
35. Prasolov A., Andreev S. Development of a Simulation Model of the Heat Transfer Process in the Hot-Blast Stove Checkerwork. International Conference on Industrial Engineering, Applications and Manufacturing. IEEE Publ., 2022. pp. 1134-1138. doi:10.1109/ICIEAM54945. 2022.9787204
Andreev S.M., Prasolov A.S., Bondarev I.S., Shvidchenko N.V. Intelligent Automatic Correction System of Period Duration for Hot Blast Stoves Taking into Account Their Real-Life State. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2023, no. 1(58), pp. 57-66. (In Russian). https://doi.org/10.18503/2311-8318-2023-1(58)-57-66