Abstract
AC regenerative drives are widely used in metallurgical rolling because of their reliability, economy and high efficiency to maintain the process.This article presents an overview of the latest achievements in the field of power connection circuits for electric drives to the power network. The article discusses multipulse connection schemes based on various types of transformers, algorithms for pre-programmed pulse-width modulation with the selected harmonic elimination method of three-level active front-end rectifiers. It provides the results of practical measurements.The results of experimental studies were obtained in the distribution power network of the metallurgical plant CherMK "Sever-Stal", which includes powerful electric drives for cold rolling mill stands based on frequency converters with active front-end rectifiers. Both frequency converters have the same power - 14 MW. One frequency converter is implemented according to a 6-pulse scheme, and the other according to a 12-pulse one. The instantaneous values of the phase current of the current transformers were recorded using a portable Flash Recorder and a Fluke 43B current clamp. The sampling frequency of the recorded signals was 30 kHz. The phase grid currentwareforms and spectrums at 6- and 12-pulse circuits are shown and the total harmonic distortion up to the 60th and 150th harmonics are calculated for different pre-programmed pulse-width modulation patterns. It is expected that this article can give a new overview of the multipulse schemes for main regenerative AC drive connections of rolling mill stands to identify modern solutions and to improve significantly their electromagnetic compatibility with the power supply system. The presented results can be used by researchers and engineers to ensure the electromagnetic compatibility of non-linear consumers in similar circuits.
Keywords
Power converters, electric drive, pulse-width modulation, voltage quality, multipulse connection schemes.
1. Kouro S., Malinowski M., Gopakumar K., Pou J., Franquelo L.G., Wu B., Rodriguez J., Pérez M.A., Leon J.I. Recent Advances and Industrial Applications of Multilevel Converters. Ind. Electron. IEEE Trans. 2010, vol. 57, pp. 2553–2580. doi: 10.1109/TIE.2010.2049719.
2. Abu-Rub H., Bayhan S., Moinoddin S., Malinowski M., Guzinski J. Medium-Voltage Drives: Challenges and existing technology. IEEE Power Electron. Mag. 2016, vol. 3, pp. 29-41. doi: 10.1109/MPEL.2016.2551802
3. Rajesh D., Ravikumar D., Bharadwaj S.K., Vastav B.K.S. Design and control of digital DC drives in steel rolling mills. 2016 International Conference on Inventive Computation Technologies (ICICT). IEEE, 2016, pp. 1-5. doi: 10.1109/INVENTIVE.2016.7830095
4. Abu-Rub H., Lewicki A., Iqbal A., Guzinski J. Medium Voltage Drives-Challenges and Requirements. In Proceedings of the IEEE International Symposium on Industrial Electronics. IEEE, 2010, pp. 1372-1377. doi: 10.1109/ ISIE.2010.5637205
5. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. IEEE Std 519-1992, 1993, pp. 1-112. doi: 10.1109/IEEESTD.1993. 114370
6. IEEE Guide for Application and Specification of Harmonic Filters. IEEE Std. 1531-2003, 2003, pp. 1-66.doi: 10.1109/IEEESTD.2003.94407
7. Voltage characteristics of electricity supplied by public distribution systems. Std. EN 50160, 2001.
8. Power Quality Measurement Methods. IEC 61000-3-2, 2000.
9. Kouro S., Rodriguez J., Wu B., Bernet S., Perez M. Powering the Future of Industry: High-Power Adjustable Speed Drive Topologies. IEEE Ind. Appl. Mag. 2012, no. 8, pp. 26–39. doi: 10.1109/MIAS.2012.2192231
10. Jing T., Maklakov A.S. A Review of Voltage Source Converters for Energy Applications. In Proceedings of the International Ural Conference on Green Energy. IEEE, 2018, pp. 275-281. doi: 10.1109/URALCON.2018.8544364
11. Bose B.K. Modern Power Electronics and AC Drives, 1st ed. Prentice Hall PTR, Hoboken, NJ, USA, 2002. 736 p.
12. Rodriguez J., Franquelo L.G., Kouro S., Leon J.I., Portillo R.C., Prats M.A.M., Perez M.A. Multilevel converters: An enabling technology for high-power applications. Proc. IEEE 2009, no. 97, pp. 1786–1817. doi: 10.1109/JPROC.2009.2030235
13. Wang L. Modeling and Control of Sustainable Power Systems: Towards Smarter and Greener Electric Grids, 1st ed. Springer, Hoboken, NJ, USA, 2012. 367 p. doi: 10.1007/978-3-642-22904-6
14. Kornilov G.P., Nikolaev A.A., Khramshin T.R. Modelirovanie elektrotekhnicheskikh kompleksov metallurgicheskikh predpriyatiy [Mathematical Modeling of the Metallurgical Plants' Electrotechnical Complexes]. Magnitogorsk, Nosov Magnitogorsk State Technical University Publ., 2012. 237 p. (In Russian)
15. Mittal N., Singh B., Singh S.P., Dixit R., Kumar D. Multilevel Inverters: A Literature Survey on Topologies and Control Strategies. 2nd International Conference on Power, Control and Embedded Systems. IEEE, 2012, pp. 1-11. doi: 10.1109/ICPCES.2012.6508041
16. Rodriguez J., Bernet S., Wu B., Pontt J.O., Kouro S. Multilevel voltage-source-converter for industrial medium-voltage drives. IEEE Trans. Ind. Electron. 2007, vol. 54, pp. 2930–2945. doi: 10.1109/TIE.2007.907044
17. Franquelo L.G., Rodriguez J., Leon J.I., Kouro S., Portillo R., Prats M.A.M. The age of multilevel converters arrives. IEEE Ind. Electron. Mag. 2008, no. 2, pp. 28–39. doi: 10.1109/ MIE.2008.923519
18. Ge B., Peng F.Z., Wu B., de Almeida A.T., Abu-Rub H. An effective control technique for medium-voltage high-power induction motor fed by cascaded neutral-point-clamped inverter. IEEE Trans. Ind. Electron. 2010, no. 57, pp. 2659–2668. doi: 10.1109/TIE.2009.2026
19. Ewanchuk J., Salmon J., Vafakhah B. A five-/nine-level twelve-switch neutral-point-clamped inverter for high-speed electric drives. IEEE Trans. Ind. Electron. 2011, vol. 47, pp. 2145–2153. doi: 10.1109/TIA.2011.2161857
20. Bernet S. State of the art and developments of medium voltage converters–An overview. Prz. Elektrotechniczny. 2006, vol. 82, pp. 1–10.
21. Mohammed S.A., Abdel-Moamen M.A., Hasanin B. A review of the state-of-the-art of power electronics for power system applications. Int. J. Electron. Commun. Eng. Res. 2013, vol. 1, pp. 43–52.
22. Fazel S.S. Investigation and Comparison of Multi-Level Converters for Medium Voltage Applications. 2017. Thesis. Technische Universität Berlin.
23. Nabae A., Takahashi I., Akagi H. New neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 1981, vol. IA–17, pp. 518–523.
24. Leon J.I., Vazquez S., Franquelo L.G. Multilevel converters: Control and modulation techniques for their operation and industrial applications. Proc. IEEE. 2017, vol. 105, pp. 2066–2081. doi: 10.1109/JPROC.2017.2726583
25. Abu-Rub H., Holtz J., Rodriguez J., Ge B. Medium-voltage multilevel converters – State of the art, challenges, and requirements in industrial applications. IEEE Trans. Ind. Electron. 2010, vol. 57(8), pp. 2581-2596. doi: 10.1109/TIE.2010.2043039
26. Wu B., Narimani M. High-Power Converters and AC Drives, 2nd ed. Wiley-IEEE Press, Hoboken, NJ, USA, 2017. 480 p.
27. Singh B., Gairola S., Singh B.N., Chandra A., Al-Haddad K. Multipulse AC–DC Converters for Improving Power Quality: A Review. IEEE Transactions on Power Electronics. 2008, vol. 23, no. 1, pp. 260-281. doi: 10.1109/TPEL.2007.911880
28. Chen J., Shen Y., Chen J., Bai H., Gong C., Wang F., Evaluation on the Autoconfigured Multipulse AC/DC Rectifiers and Their Application in More Electric Aircrafts. IEEE Transactions on Transportation Electrification. 2020, vol. 6, no. 4, pp. 1721-1739. doi: 10.1109/TTE. 2020.2983858
29. Nikolaev A.A., Bulanov M.V., Shakhbieva K.A. Quality Improvement of Electric Power in the Intra-factory Electric Networks through the Use of PWM Algorithm Selective Harmonic Mitigation. 2020 Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI). IEEE, 2020, pp. 26-31. doi: 10.1109/PEAMI49900.2020.9234357
30. Okayama H., Uchida R., Koyama M., Mizoguchi S., Tamai S. Large capacity high performance 3-level GTO inverter system for steel main rolling mill drives. IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting. IEEE, 1996, vol. 1, pp. 174-179. doi: 10.1109/IAS.1996.557012
31. de Nazareth Ferreira V., Cupertino A.F., Pereira H.A., Rocha A.V., Isaac Seleme S., de Jesus Cardoso Filho B. Design of high-reliable converters for medium-voltage rolling mills systems. 2017 IEEE Industry Applications Society Annual Meeting. IEEE, 2017, pp. 1-9. doi: 10.1109/IAS.2017.8101826
32. Bocker J., Janning J., Jebenstreit H. High dynamic control of a three-level voltage-source-converter drive for a main strip mill. IEEE Transactions on Industrial Electronics. 2002, vol. 49, no. 5, pp. 1081-1092. doi: 10.1109/TIE.2002.803220
33. Safaeian M., Jalilvand A., Taheri A.A. MRAS based model predictive control for multi-leg based multi-drive system used in hot rolling mill applications. IEEE Access. 2020, vol. 8, pp. 215493-215504. doi: 10.1109/ACCESS.2020.3041310
34. Radionov A.A., Maklakov A.S., Gasiyarov V.R. Smart Grid for main electric drive of plate mill rolling stand. 2014 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS). IEEE, 2014, pp. 1-4. doi: 10.1109/MEACS.2014.6986842
35. Pontt J.A., Rodriguez J.R., Liendo A., Newman P., Holtz J., San Martin J.M. Network-Friendly Low-Switching-Frequency Multipulse High-Power Three-Level PWM Rectifier. IEEE Transactions on Industrial Electronics. 2009, vol. 56, no. 4, pp. 1254-1262. doi: 10.1109/ TIE.2008.2007998
36. Maklakov A.S., Radionov A.A. Integration prospects of electric drives based on back to back converters in industrial smart grid. 2014 12th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2014, pp. 770-774. doi: 10.1109/APEIE.2014.7040790
37. Zhang Y., Tan J., Wang J., Li J. Hardware-in-loop simulation and application for high-power AC-DC-AC rolling mill driving system. 2015 IEEE 11th International Conference on Power Electronics and Drive Systems. IEEE, 2015, pp. 177-180. doi: 10.1109/PEDS.2015.7203385
38. Nakajima T., Suzuki H., Izumi K., Sugimoto S., Yonezawa H., Tsubota Y. A converter transformer with series-connected line-side windings for a DC link using voltage source converters. IEEE Power Engineering Society. 1999 WinterMeeting (Cat. No.99CH36233). 1999, vol. 2, pp. 1073-1078. doi: 10.1109/PESW.1999.747351
39. Kornilov G.P., Khramshin T.R., Abdulveleev I.R. Increasing stability of electric drives of rolling mills with active front ends at voltage sag. 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS). IEEE, 2019, pp. 1-4. doi: 10.1109/ICOECS46375.2019.8949945
40. de Nazareth Ferreira V., Fagner Cupertino A., Augusto Pereira H., Vagner Rocha A., Isaac Seleme S., de Jesus Cardoso Filho B. Design and Selection of High Reliability Converters for Mission Critical Industrial Applications: A Rolling Mill Case Study. IEEE Transactions on Industry Applications. 2018, vol. 54 (5), pp. 4938-4947. doi: 10.1109/ TIA.2018.2829104
41. Orcajo G.A., D. Rodríguez J., Cano J.M., Norniella J.G. Retrofit of a Hot Rolling Mill Plant With Three-Level Active Front End Drives. IEEE Transactions on Industry Applications, vol. 54(3), pp. 2964-2974. doi: 10.1109/TIA.2018.2808159
42. Espinosa E.E., Melin P.E., Garcés H.O., Baier C.R., Espinoza J.R. Multicell AFE Rectifier Managed by Finite Control Set–Model Predictive Control. IEEE Access. 2021, vol. 9, pp. 137782-137792. doi: 10.1109/ACCESS.2021.3116938
43. Chengsheng W., Chongjian L., Chunyi Z., Zhiming L., Qiongtao Y. Study on large power converter system for rolling mills. 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC). IEEE, 2012, pp. DS1b.20-1-DS1b.20-4. doi: 10.1109/EPEPEMC.2012. 6397220
44. Maklakov A.S., Jing T., Radionov A.A., Gasiyarov V.R., Lisovskaya T.A. Finding the Best Programmable PWM Pattern for Three-Level Active Front-Ends at 18-Pulse Connection. Machines. 2021, vol. 9, 127. doi: 10.3390/machines9070127
45. Gasiyarov V.R., Maklakov A.S., Lisovski R.A. Grid power control by medium voltage AC drives based on back-to-back converters. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2018, pp. 629-631. doi: 10.1109/EIConRus.2018.8317175
46. Wang P., Liu F., Zha X., Gong J., Zhu F., Xiong X. A Regenerative Hexagonal-Cascaded Multilevel Converter for Two-Motor Asynchronous Drive. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2017, vol. 5(4), pp. 1687-1699. doi: 10.1109/JESTPE.2017.2713043
Maklakov A.S., Nikolaev A.A., Radionov A.A., Gasiyarov V.R., Gilemov I.G. Grid Connection Circuits for Powerful Regenerative Electric Drives of Rolling Stands. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2022, no. 4(57), pp. 42-53. (In Russian). https://doi.org/10.18503/2311-8318-2022-4(57)- 42-53