download PDF

Abstract

The article considers the issues of computer-aided design system for circuits of open switchgear using the original software product "ORU CAD". This software makes it possible to develop a single-line circuit of the switchgear on the basis of initial data for design (voltage, number of connections, type of substation and load value) in the “KOMPAS” environment, to make a specification of the equipment using the database. When developing the software product, the developers focus on the current rules and regulations for the design of open switchgear. The description of construction of the database of the main equipment of open switchgear 35-220 kV is adapted to the design of schemes of switchgears and technical and economic comparison of their possible options. The database contains the main technical parameters, reliability indicators (failure flow parameter, recovery time) as well as prices for power transformers, switches, current and voltage transformers, surge arresters, disconnectors and lines. A graphical display designed in "KOMPAS" is stored for the future construction plans of distribution devices in the database for each object. To provide the unification of the database, displaying items on the plans is made in the same scale with the application of dimensions. For the implementation of the technical and economic comparison of design options the prices of the equipment described in the consolidated cost performance relative to 2002, the Database is designed so that the user can introduce additional equipment and adjust price indices of existing equipment. The software package is developed for electrotechnical departments of the design organizations for the purpose of acceleration of process of work of the engineer-designer.

Keywords

Power engineering, computer-aided design system, open switchgear, substation, database, electrical equipment, transformer, switching equipment.

Aleksandra V. Varganova

Ph.D. (Eng.), Associate Professor, Industrial Electric Power Supply Department, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID: https://orcid.org/0000-0003-4675-7511.

Evgeniya A. Panova

Ph.D. (Eng.), Associate Professor, Industrial Electric Power Supply Department, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID: https://orcid.org/0000-0001-9392-3346.

Tatyana V. Khatushina

Student, Computer Engineering and Programming Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID: https://orcid.org/0000-0002-1612-9365.

Vlada S. Kononenko

Student, Industrial Power Supply Systems Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID: https://orcid.org/0000-0002-2436-295X.

Khamis M. Bagaeva

Student, Industrial Power Supply Systems Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.. ORCID: https://orcid.org/0000-0003-2391-270X.

1. Kovalev A.A., Golovin A.A. The Application of CAD for lighting calculations. Sovremennye nauchnye issledovaniya i innovacii [Modern research and innovation], 2014, no. 6–1 (38), pp. 37. (In Russian)

2. Kurin S.V. Tracepro CAD Tools for analysis and design of optical systems of lighting devices and lighting systems. Materialy XX nauchno-prakticheskoj konferencii molodyh uchenyh, aspirantov i studentov Nacionalnogo issledovatelskogo Mordovskogo gosudarstvennogo universiteta im. N.P. Ogaryova [Proceedings of the XX scientific-practical conference of young scientists, postgraduates and students of the national research N. P. Ogarev Mordovia state University], 2016, pp. 138–141. (In Russian)

3. Smaznov D. N. Using CAD "Transline" to solve research problems in the field of structural engineering in the power industry. Elektro. Elektrotekhnika, elektroehnergetika, elektrotekhnicheskaya promyshlennost [Elektro. Electrical engineering, electrical engineering, electrical engineering], 2010, no. 1, pp. 39–44. (In Russian)

4. Rivera C. A., Poza J., Ugalde G., G. Almandoz, A Knowledge Based System architecture to manage and automate the electrical machine design process. 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Donostia-San Sebastian, 2017, pp. 1–6. doi: 10.1109/ECMSM.2017.7945875.

5. Aravind C.V., Grace I., Rozita T., Rajparthiban R., Rajprasad R. Wong Y.V. Universal computer aided design for electrical machines/ 2012 IEEE 8th International Colloquium on Signal Processing and its Applications, Melaka, 2012, pp. 99–104. doi: 10.1109/CSPA.2012.6194699.

6. Kobelev A.S. Agent-oriented programming as frame realization for the electrical machine intelligent cad systems. Elektrotekhnika [Electrical engineering], 2005, no. 5, pp. 8–14. (In Russian)

7. Kobelev A.S. Efficiency of frame systems knowledge representation for the electrical machine intelligent CAD systems. Elektrotekhnika [Electrical engineering], 2005, no. 5, pp. 18–23. (In Russian)

8. Trofimovich I.V., Tikhonov A.I. Development of CAD transformers with parametric generation of design and technological documentation. Sostoyanie i perspektivy razvitiya ehlektro- i teplotekhnologii Materialy mezhdunarodnoj nauchno-tekhnicheskoj konferencii: (XVIII Benardosovskie chteniya) [State and prospects of development of electric and thermal technologies Materials of the international scientific and technical conference : (XVIII Benardosov readings)], 2015, pp. 204–208. (In Russian)

9. Agapov A.A., Chernykh T.E. The use of CAD to create computer models of windings of electrical machines. Prikladnye zadachi ehlektromekhaniki, ehnergetiki, ehlektroniki. Inzhenernye idei XXI veka Trudy Vserossijskoj studencheskoj nauchno-tekhnicheskoj konferencii [Applied problems of electromechanics, energy, electronics. Engineering ideas of the XXI century Proceedings of the all-Russian student scientific and technical conference], 2016, pp. 15–18. (In Russian)

10. Stulov A.V., Tikhonov A.I., Kornev I.A. Subsystem CAD distribution transformers for calculation of load losses in foil windings with current displacement. Vestnik Ivanovskogo gosudarstvennogo ehnergeticheskogo universiteta [Bulletin of Ivanovo state power engineering University], 2015, no. 2, pp. 71–74. (In Russian)

11. Bershadskij I.A., Kovalev A.P., Zgarbul A.V. Development of CAD system to design a power plant at the voltage of 0.4 kV. Elektro. Elektrotekhnika, elektroehnergetika, elektrotekhnicheskaya promyshlennost [Electro. Electrical engineering, electrical power engineering, electrical industry], 2015, no. 4, pp. 47–52. (In Russian)

12. Alferov A.A., Drobov A.V., Galushko V.N. Automated selection of elements and solving problems in the design of power supply systems up to 1 kV. Agrotekhnika i energoobespechenie [Agricultural machinery and energy], 2017, vol. 1, no. 14 (1), pp. 84–92. (In Russian)

13. Kazakov O.I. Automation of the choice of wire colors in the design of electrical equipment. Elektrotekhnika [Electrical engineering], 1995, no. 10, pp. 61–64. (In Russian)

14. Voskobovich V.Yu. Automated modeling of multimachine power systems using Orcad 9.2 (Pspice). Izvestiya Etu "LETI" [Bulletin of ETU “LETI”], 2003, no 10, pp. 22–28. (In Russian)

15. Eliseev D.S. CAD algorithms for selection of wires and cables. Volgograd, 2012, 184 p. (In Russian)

16. Katsadze T.L., Nazarova M.A. Mathematical model and method of automatic placement of overhead transmission power line towers for CAD system. Energetika: ekonomіka, tekhnologії, ekologіya, 2012, no. 2 (31), pp. 49–54.

17. Katsadze T., Nazarova M. Database elements of automatic design systems for overhead transmissions lines. Dopovidi-za-materialami-midnarodno-naukovo-tekhnichno konferenci molodih uchenih aspirantiv i studentiv suchasni problemi-elektroenergotekhniki i avtomatiki., 2012, pp. 100–101.

18. Vorobyev S., Karpov N. Model Studio CS power line - real automation of the process of designing transmission line. SAPR i grafika [CAD and graphics], 2009, no. 3, pp. 26–29. (In Russian)

19. Malhara S., Vittal V. Mechanical State Estimation of Overhead Transmission Lines Using Tilt Sensors. IEEE Transactions On Power Systems, 2010, vol. 25, no. 3, pp. 1282–1290.

20. Akhtulov A.L., Akhtulova L.N., Leonov E.N., Smirnov S.I. Statement of Problem of Synthesis of Industrial Electric Supply Basic Schemes by Means of Modern CAD. Vestnik izhevskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Kalashnikov ISTU], 2011, no. 1, pp. 110–113. (In Russian)

21. Nazipov D.A., Antonov V.I. CAD software for logical relay protection controllers. Tezisy dokladov «Nauchnaya konferenciya molodyh uchenyh i specialistov goroda Cheboksary [Abstracts of Scientific conference of young scientists and specialists of Cheboksary], 1990, p. 146. (In Russian)

22. Shoglev D.G. Analysis of efficiency and reduction of time costs due to the use of CAD Eplan during all stages of protection cubicle manufacturing. Sbornik materialov ХХХVIII sessii Vserossijskogo nauchnogo seminara po tematike «Diagnostika energooborudovaniya» [Collection of scientific papers of ХХХVIII All-Russian scientific seminar on power equipment diagnostics], 2016, pp. 210–213. (In Russian)