download PDF


The synchronous generators with compound system excitation are used widely in the ship’s electrical power systems. In the paper the compound system excitation model is suggested, which takes into account the compound transformer processes. This allows taking into account all his property, which has great importance to account the transformer forcing features on a transient processes. A transient processes, caused by various disturbances, are investigated by modeling. Received results show the accuracy and usefulness of suggested model.


Compound system excitation of ship’s synchronous generators, automatic voltage regulator, ship’s electrical power system models.

Djagarov Nikolay Filev – D.Sc.(Eng.), Professor, Nikola Vaptsarov Naval Academy, Varna, Bulgaria.

Bonev Milen Bonev – Ph.D.(Eng.), Associate Professor, head of the Electrical Engineering Department, Nikola Vaptsarov Naval Academy, Varna, Bulgaria.

Grozdev Zhivko Genchev – Ph.D.(Eng.), Associate Professor, Nikola Vaptsarov Naval Academy, Varna, Bulgaria.

Lazarov Todor Petrov – Assistant, Nikola Vaptsarov Naval Academy, Varna, Bulgaria.

Djagarova Julia Viktorovna – postgraduate student, Technical University of Varna, Bulgaria.

1. Concordia C. Steady-State Stability of Synchronous Machines as Affected by Voltage-Regulator Characteristics, Transactions on Electrical Engineering, vol.63, no.6, May 1944, pp. 215-220.

2. Venikov V.A. Elektromekhanicheskie perekhodnye protsessy v elektricheskih sistemah [Electromechanical transients processes in electrical systems]. Moscow- Leningrad, Energy. 1964, 380 p.

3. Mihnevich G.V. Sintez struktury sistemy avtomaticheskogo regulirovaniya vozbuzhdeniya sinhronnyh mashin [The synthesis of the structure of the system of synchronous machines excitation automatic control]. Moscow, Science, 1964, 232 p.

4. Ketner K.K., Kozlova I.A., Sendyurev V.M. Algoritmizatsiya raschetov perekhodnyh protsessov avtonomnyh elektroenergeticheskih system [Algorithmization of the calculation of transitional autonomous electric power systems]. Riga, Zinatne, 1981, 166 p.

5. Baranov A.P. Sudovye avtomatizirovannye elektroenergeticheskie system [Shipboard automated electric power systems]. Moscow, “Transport”, 1988, 328 p.

6. Dzhagarov N.F. Korabni elektroenergiyni sistemi, Varna, Tekhnicheski universitet, 1997, 428 p.

7. Tokarev L.N. Sudovaya elektrotekhnika i elektromekhanika [Ship’s Electrical Engineering and Electromechanics]. Saint Petersburg, Beresta, 2006, 324 p.

8. Djagarov N., Lazarov T. Automatic Voltage Regulator for a Ship’s Synchronous Generator, Proceedings of Twelfth Int. Conference on Marine Sciences and Technologies, Varna, 25-27 Sep. 2014, pp.132-137.

9. Dzhagarov N.F. Raschet perekhodnyh protsessov v elektricheskih sistemah so slozhnoy strukturoy seti [Calculation of transient processes in electrical systems with complex network structure]. Elektrichestvo [Electricity], 1990, №1, pp. 9-16.

10. Yeager K.E., Willis J.R. Modeling of Emergency Diesel Generators in an 800 Megawatt Nuclear Power Plant, IEEE Transactions on Energy Conversion, nol.8, no.3, Sep. 1993.

11. Ewart D.N. Digital Computer Simulation Model of a Steel-Core Transformer, IEEE Transactions on Power Delivery, Vol.PWRD-1, no.3, July 1986, pp.174-182.

12. David J., Gross C.A. Nonlinear Modeling of Transformers, IEEE Transactions on Industry Applications, vol.24, no.3, May 1988, pp.434-438.

13. Dolinar D., Pihler J., Grcar B. Dynamic Model of a Three-Phase Power Transformer, IEEE Transactions on Power Delivery, vol.PWRD-8, no.4, Oct. 1993, pp.1811-1819.

14. Narang A., Brierley R.H. Topology Based Magnetic Model for Steady-state and Transient Studies for Three-Phase Core Type Transformers, IEEE Transactions on Power Systems, vol.9, no.3, Aug. 1994, pp.1337-1349.

15. SimPowerSystems, For Use with Simulink, User’s Guide Version 3, The MathWorks, Inc. 2003, 620 p