doi 10.18503/2311-8318-2016-2(31)-35-43

download PDF


The purpose of the research is to improve the efficiency of the system for obtaining expert information gained as a result of processing and analysis of images of sulfur prints of a continuous cast billet. The issues solved during the research are analysis of traditional methods of visualization and obtaining of expert information on the quality of continuous cast billet, development of special mathematical and algorithmic tools for image classification of sulfur prints based on formative characteristics of histogram and fuzzy sets. The research was done for continuous casting machines used in process of square continuously cast billets producing from 2011 to 2015. Methods of system analysis were used to find ways to obtain expert information about the quality of continuous cast billet, image processing and classification; fuzzy sets are also used in this research. As a result, the research group introduced formalized description of sulfur print image structure, the cascade method of image classification, efficiency indicator of a new system for obtaining expert information and multi-level adaptive image processing trajectory. The value of efficiency indicator demonstrated that the new system is 25% more efficient than the traditional one.


Graphic information, visualization, image classification, sulfur prints, continuous cast billet.

Posokhov I.A.

1. Logunova O.S. Sistemnyi podkhod k issledovaniyu informatsionnykh potokov v upravlenii kachestvom nepreryvnolitoy zagotovki [System Approach to Analysis of Information Flows in Continuous Cast Billet Quality Control]. Problems of control theory and practice. 2008, no.6, pp.56-62.

2. Gonsales Р., Woods R. Tsifrovaya obrabotka izobrazheniy [Digital Image Processing]. Мoscow. Technosphere. 2005, 1072 p.

3. Varma M., Zisserman A. A Statistical Approach to Texture Classification from Single Images. International Journal of Computer Vision. 2005, vol.62(1/2), pp.61-81.

4. Shapiro L., Stockman J. Kompyuternoe zrenie [Computer Vision]. Мoscow. Binom. 2006, 752 p.

5. Cannon R.L. [et al.] Segmentation of a thematic Mapper Im-age using the fuzzy c-means clustering algorithm. IEEE Trans. Geosci.Remote Sensing. 1986, vol.GE-24, pp.400-408.

6. Afanasyeva A., Ignatenko A. Algoritm poiska oblastey rezkosti na stereoizobrazheniyakh [Search Algorithm for Sharpness Region in Stereo Images]. GraphyCon’2014: 24th International conference on computer graphics and vision. 2014, pp. 160-164.

7. Chapeiie O., Haffner P., Vapnik V. Support Vector Machines for Histogram-Based Image Classification. IEEE Transac-tions on neural networks. 1999, vol.10, iss.5, pp.1055-1064.

8. Foody G. A relative Evaluation of MultiClass Image Classificafion by Suuport Vector Machines. IEEE Transac-tions on geoscience and remote sensing. 2004, vol.42, iss.6, pp.1335-1343.

9. Zade L. Ponyatie lingvisticheskoi peremennoy i ego primenenie k prinyatiyu problizhennykh resheniy [Concept of Linguistic Variable and its Application for Making Approxi-mate Solutions]. Мoscow. Mir. 1976, 165 p.

10. Terano T., Asai K., Sugeno M. Prikladnye nechetkie sistemy [Applied Fuzzy Systems]. Мoscow. Mir. 1993, 366 p.

11. Spirin N.A., Lavrov V.V. Informatsionnye sistemy v metallurgii: konspekt lektsiy (otdelnye glavy iz uchebnika dlya vuzov) [Information Systems in Metallurgy: Lecture Notes: some chapters from the textbook for universities]. Ye-katerinburg: the Ural state technical university – UPI. 2004, 495 p.

12. Logunova O.S., Devyatov D.Kh., Nurov H.H. Otsenka kachestva nepreryvnolitoy zagotovki sattisticheskimi metodami ispolzuya programmnye sredstva [Estimation of Continuous Cast Billet Quality by Statistical Methods Using Software Tools]. Proceedings of universities. Ferrous metal-lurgy. 2005, no.9, pp. 54-58.

13. Posohov I.A., Logunova O.S. Tehnologiya obrabotki izobrazheniy zagotovok na osnove operatsiy morfologicheskogo analiza [Billet Image Processing Technology on the Basis of Morphological Analysis Operations]. Mathematical and software tools for systems in industry and sociology. 2011, no.1-2, pp.191-196.

14. Logunova O.S., Pavlov V.V., Nurov H.H. Otsenka statisticheskimi metodami sernogo otpechatka poperechnogo templeta nepreryvnolitoy zagotovki [Using Statistical Meth-ods for Assessment of Sulfur Print of Transverse Template of Continuous Cast Billet]. Electrometallurgy. 2004, no.5, pp.18-24.

15. Logunova O.S. Tehnologiya issledovaniya informatsionnykh potokov na metallurgicheskom predpriyatii [Technology of Information Flow Analysis at Metallurgical Enterprise]. In-formation technologies in design and production. 2008, no. 3, pp.32-36.

16. Logunova O.S., Matsko I.I., Posohov I.A., Lukaynov S.I. Automatic system for intelligent support of continuous cast billet production control processes. The International Journal of Advanced Manufacturing Technology. 2014, vol.74(9), pp.1407 – 1418.

17. Logunova O.S., Pavlov V.V., Posohov I.A., Matsko I.I., Matsko O.S. Struktura kaskadnoy sistemy upravleniya mnogostadiynymi tehologicheskimi protsessami [Structure of Cascade Control System of Multi-stage Technological Pro-cesses]. Bulletin of NTU “KhPI”. Informatics and modelling. 2013, no.19(992), pp.75-80.

18. Posohov I.A., Logunova O.S. Tehnologiya obrabotki izobrazheniy zagotovok na operatsiy morfologicheskogo analiza [Technology of Billet Image Processing on the Basis of Analysis of Morphological Operations]. Mathematical and software system tools in industry and sociology. 2011, part 2, pp.191-196.

19. Logunova O.S., Matsko I.I., Posochov I.A. Integrated system structure of intelligent management support of multistage metallurgical processes. Vestnik of Nosov Magnitogorsk State Technical university. 2013, no.5, pp.50-55.

20. Logunova O.S., Matsko I.I., Posohov I.A. Sistema intellektualnoy poderzhki protsessov upravleniya proizvodstvom nepreryvnolitoy zagotovki [System of Intelligent Support of Control Processes in Continuous Cast Billet Production]. Magnitogorsk. Publishing center of Nosov Magnitogorsk State Technical University. 2013, 175 p.