download PDF


The authors developed a specialized program for the universal package of simulation MatLab that automates the conversion of a wide class of nonlinear control systems to the equivalent linear form in the canonical Brunovsky form using involutive distributions of geometric control theory in the space of "input - state". This article provides an example of an application program to obtain the equivalent linear mathematical model of the motion of diesel trains, which consists of ten ordinary nonlinear differential equations with four control circuits and describes the drive with two parallel running traction asynchronous motors. Thus the synthesized linear model in Brunovsky form has four cells and controllability index equal to four. The resulting linear motion model of a diesel train can be used to find the optimal controls and to study the slipping and skidding processes.


Brunovsky form, geometric control theory, mathematical model of diesel train movement.

Dmitrienko Valerij Dmitrievich – D.Sc. (Eng.), Professor, National Technical University "Kharkov Polytechnic Institute", Kharkov, Ukraine.

Zakovorotnyj Aleksandr Juryevich – Ph.D. (Eng.), Associate Professor, doctoral student, National Technical University "Kharkov Polytechnic Institute", Kharkov, Ukraine. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..

1. Baujer H.P. Optimalnoe ispolzovanie stceplenija na jelektrovoze s trehfaznym tjagovym privodom [Optimum application of coupling at electric locomotive with a three-phase traction drive]. Zheleznye dorogi mira, 1987, no. 8, pp. 10-23.

2. Ohishi K., Ogawa Y. Adhesion control of electric motor coach based on force control using disturbance observer. IEEE, Advanced Motion Control. April, 2000, pp. 323-328.

3. Shapran E.N. Sovershenstvovanie mikroprocessornyh sistem upravlenija s vysokim ispolzovaniem sil stseplenija [Improvement of microprocessor control systems with intensive application of adhesive forces]. Vіsnik NTU "HPІ", 2006, no. 23, pp. 145-154.

4. Noskov V.I., Dmitrienko V.D., Zapolovskij N.I., Leonov S.Ju. Modelirovanie i optimizacija sistem upravlenija i kontrolja lokomotivov [Simulation and optimization of locomotive control system] Harkov, HFI "Transport Ukrainy", 2003,248 p.

5. Artemenko A.N. Sistema avtomaticheskogo vyravnivanija nagruzki tjagovogo elektroprivoda karyernogo elektrovoza [System of automatic load balancing for traction electric drive of open-cast electric locomotive]. Vіsnik Kremenchuc'kogo derzhavnogo unіversitetu іm. Mihajlo Ostrograds'kogo. Kremenchuk: KDN іm. Mihajlo Ostrograds'kogo. 2010, vol. 4, part 3, pp. 56-58.

6. Pritula M.G., Shpakovich R.R. Modeljuvannja ta rozrahunok optimal'nih parametrіv ruhu poїzdіv. Fіzikomatematichne modeljuvannja ta іnformacіjnі tehnologії. 2007. Is. 5, pp. 139-145.

7. Dmitrienko V.D., Zakovorotnyj A.Ju. Sintez optimalnyh zakonov upravlenija tjagovym elektroprivodom metodami differencialnoj geometrii i principa maksimuma [Synthesis of optimum control laws for traction electric drive using differential geometry methods and maximum principle]. Sistemi obrobki іnformacії, 2009, vol. 4(78), pp. 42-51.

8. Metody klassicheskoj i sovremennoj teorii avtomaticheskogo upravlenija [Methods of classical and modern theory of automatic control]. Textbook in 5 vol., vol. 4: Theory of automatic control systems optimization. Under the editorship of K.A. Pupkov and I.D. Egunov. Moscow: Bauman MSTU, 2004, 784 p.

9. Metody klassicheskoj i sovremennoj teorii avtomaticheskogo upravlenija [Methods of classical and modern theory of automatic control]. Textbook in 5 volumes. Vol. 5: Methods of modern control theory. Under the editorship of K.A. Pupkov and N.D. Egunov. Moscow: Publishing house of Bauman MGTU, 2004, 784 p.

10. Dmitrienko V.D. Modelirovanie i optimizacija processov upravlenija dvizheniem dizel-poezdov [Simulation and optimization of control processes of diesel-trains movement] / V.D. Dmitrienko, A.Ju. Zakovorotnyj. Kharkov: Publishing house of "HTMT", 2013, 248 p.

11. Krasnoschjochenko V.I. Nelinejnye sistemy: geometricheskij metod analiza i sinteza [Nonlinear systems: geometrical method of analysis and synthesis] / V.I. Krasnoschjochenko, A.P. Grischenko. Moscow: Publishing house of Bauman MSTU, 2005, 520 p.