Магнитогорский государственный технический университет им. Г.И. Носова

АВТОМАТИЗИРОВАННАЯ ПРОВЕРКА ОДНОПОЛОСНЫХ ШИН ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ
ПО УСЛОВИЯМ ТЕРМИЧЕСКОЙ И ЭЛЕКТРОДИНАМИЧЕСКОЙ СТОЙКОСТИ

При проектировании понизительных подстанций проектировщик вынужден выполнять большой объем рутинных расчетов. Эти расчеты требуют от проектировщика умения ориентироваться в большом объеме нормативных документов, инструкций и ГОСТ, а также каталогов заводов-изготовителей электroteхнического оборудования. Применение для этих целей САПР позволяет значительно сократить время, которое проектировщик затрачивает на выполнение расчетной части проекта. Однако существующие на сегодняшний день САПР либо автоматизируют один или несколько этапов проекта, либо основаны на нормах и стандартах, не действующих на территории РФ. Авторами данной статьи разработан алгоритм автоматизированного выбора и проверки жестких шин прямоугольного сечения, выполненных из одной полосы. Описанный в работе алгоритм позволяет выбрать сечение шины по условиям ее нагрева током утепленного режима, а также осуществить его проверку на термическую и электродинамическую стойкость. Алгоритм отличается наличием математического описания номограмм динамического коэффициента, что снижает возможность ошибки при его определении и значительно облегчает работу проектировщика. Алгоритм основан на действующих руководящих указаниях по расчету токов короткого замыкания и выбору электрооборудования. Разработанный алгоритм реализован в оригинальной САПР понизительных подстанций, в которую интегрирована база данных электрооборудования. Такой подход позволяет автоматизировать разработку проекта комплексно. При выборе электрооборудования в данной САПР проектировщику на любом этапе доступны в базе данных только те аппараты и проводники, которые удовлетворяют условиям их работы в продолжительных и аварийных режимах.

Ключевые слова: автоматизированное проектирование, термическая стойкость, электродинамическая стойкость, сборные шины, распределительное устройство, подстанция.

ВВЕДЕНИЕ

В силу того, что выполнение проектных расчетов представляет собой хотя и трудоемкую рутинную задачу, целесообразным является использование САПР в работе проектировщиков. Так, при проектировании электроустановок наиболее широко используются чертежно-графические САПР [1, 2], позволяющие выполнять чертежи электрических схем с использованием встроенной библиотеки элементов, соответствующих требованиям ЕСКД. Это значительно сокращает время выполнения проекта, однако не избавляет проектировщика от выполнения расчетов.

Одним из наиболее трудоемких процессов является выбор и проверка проводников и электрических аппаратов распределительных устройств, так как он связан с выполнением громоздких однотипных расчетов, а также с необходимостью использования каталогов заводов-изготовителей электрооборудования, справочной и нормативной литературы. Существуют САПР, позволяющие осуществлять выбор и проверку отдельных видов аппаратов, таких как высоковольтные выключатели [3], либо гибких шин [4] и кабелей [5].

Рассмотренные САПР не позволяют проектировщику автоматизировать весь процесс проектирования подстанции. То есть проектировщик вынужден использовать различные программы для выполнения отдельных этапов проекта.

Таким образом, актуальной является задача разработки САПР, позволяющей комплексно выполнять проект подстанции в автоматизированном режиме и позволяющей вносить изменения в принятые программой решения на любом этапе проекта.

Авторами данной статьи разработан алгоритм автоматизированного выбора и проверки жестких шин прямоугольного сечения. Данный алгоритм реализован в САПР понизительных подстанций, позволяющей на основе технического задания осуществить выбор схем распределительных устройств, электрооборудования и формировать планы РУ. Данная САПР основана на действующих ГОСТ и ЕСКД и, кроме выполнения проектных расчетов, позволяет формировать пояснительную записку, чертежи в формате *.dwg и спецификации. Отличительной особенностью САПР является возможность выполнения технико-экономического сопоставления вариантов проектных решений и выдачи рекомендаций по оптимальному варианту.
АЛГОРИТМ АВТОМАТИЗИРОВАННОГО ВЫБОРА СБОРНЫХ ШИН И ПРОВЕРКИ ПО УСЛОВИЮ ТЕРМИЧЕСКОЙ СТОЙКОСТИ

Предложенный алгоритм выбора сборных шин и их проверки на термическую и электродинамическую стойкость основан на действующих руководящих указаниях [10].

Исходными данными для проверки шинной конструкции на электродинамическую и термическую стойкость являются номинальные параметры проверяемого сечения шины, которые берутся из базы данных электрических аппаратов [11], а также результаты расчета составляющих тока трехфазного короткого замыкания [12], выполненного средствами разработанной авторами САПР.

Для выбора площади поперечного сечения проводимой шинной конструкции алгоритмом САПР предусмотрен расчет тока в узкожелтом режиме. Для распределительного устройства напряжением 6-10 кВ пониженной подстанции ток сборных шин принимается равным току на стороне НН силового трансформатора в узкожелтом режиме и, с учетом его перегрузочной способности, равен:

$$I_{\text{нагр, max}} = \frac{k_n S_{\text{ном}}}{n\sqrt{3}U_{\text{ном}}},$$ \hspace{1cm} (1)$$

где k_n — коэффициент загрузки трансформатора в режиме аварийных перегрузок (если значение не задано ранее проектировщиком, то он принимается равным 1,4); $S_{\text{ном}}$ — номинальная мощность трансформатора, кВА; n — число параллельно работающих ветвей обмотки трансформатора; $U_{\text{ном}}$ — номинальное напряжение трансформатора, кВ.

Подобно алгоритму определения тока в узкожелтом режиме рассмотрен в [13].

Условием выбора поперечного сечения сборной шины будет превышение её номинального допустимого тока по нагрузке тока узкожелтого режима, определенного в соответствии с (1). Таким образом, проектировщику доступны для выбора из базы данных только те шины, которые соответствуют выбранному профилю и условию

$$I_{\text{ном}} \leq I_{\text{нагр, max}},$$ \hspace{1cm} (2)$$

где $I_{\text{ном}}$ — длительно допустимый ток шины, А.

Для дальнейшей проверки шинной конструкции на термическую и электродинамическую стойкость из базы данных используются следующие номинальные параметры:

- E — модуль упругости материала шины, Па;
- M — масса шины на единицу длины, кг/м;
- b — ширина шины, м;
- h — длина шины, м;
- материал (марка сплава);
- $\sigma_{\text{ном}}$ — допустимое напряжение в материале жестких шин, Па.

Кроме номинальных параметров проводника для проверки сборных шин на термическую и электродинамическую стойкость в качестве исходных данных учитываются параметры ячейки КРУ или КСО, на базе которых планируется выполнение распределительного устройства. Необходимыми параметрами являются расстояние между осями проводников (a, м), взаимное расположение фаз шин (в одной плоскости, по вершинам равностороннего треугольника, по вершинам равнобедренного треугольника), а также длина пролета сборных шин (l, м), которая принимается равной ширине ячейки КРУ/КСО.

Расчет величины ударающего тока при трехфазном коротком замыкании ($i_{\text{тр}}$), кА и удельного коэффициента (k_3) предусмотрен алгоритмом САПР [12] на предыдущем этапе проектирования. Удельный коэффициент в этом рассчитывается на основе постоянной времени электрической цепи, которая представляет собой энергосистему, связанную с точкой короткого замыкания через силовой трансформатор.

Для проверки сборных шин на термическую стойкость сначала определяется тепловой импульс:

$$B_k = \frac{I_0^2}{n_0} (0,02 + t_{\text{ф.ы.}} + T_0),$$ \hspace{1cm} (3)$$

где I_0 — начальное значение апериодической составляющей тока трехфазного короткого замыкания (определяется на предыдущем этапе проектирования), кА; $t_{\text{ф.ы.}}$ — полное время отключения выключателя в цепи НН пониженного трансформатора, с; T_0 — постоянная времени электрической цепи, которая зависит от мощности пониженного трансформатора на прокладываемом РУ [12], с.

При определении теплового импульсса для проверки сборных шин в предлагаемом алгоритме САПР принято, что время действия релейной защиты равно времени срабатывания дифференциальной защиты силового трансформатора и составляет 0,02 с.

На основе рассчитанного по (3) теплового импульса в данных о материале шины рассчитывается минимально допустимое сечение по условиям термической стойкости:

$$S_{\text{тр,мин}} = \frac{\sqrt{B_k \cdot 10^6}}{C_{\text{тр}}},$$ \hspace{1cm} (4)$$

где $C_{\text{тр}}$ — коэффициент, зависящий от материала проводника, в соответствии с [10] для медных шин $C_{\text{тр}} = 170 \text{ A} \cdot \text{c}^{1/2}/\text{мм}^2$, а для алюминиевых $C_{\text{тр}} = 90 \text{ A} \cdot \text{c}^{1/2}/\text{мм}^2$.

Для проверки шинной конструкции на термическую стойкость выполняется проверка неравенства:

$$S \geq S_{\text{тр,мин}},$$ \hspace{1cm} (5)$$

где $S = b \cdot h$ — расчетное сечение шины, мм².

АВТОМАТИЗИРОВАННАЯ ПРОВЕРКА СБОРНЫХ ШИН ПО УСЛОВИЮ ЭЛЕКТРОДИНАМИЧЕСКОЙ СТОЙКОСТИ

Наибольшую сложность представляет автоматизация проверки шинной конструкции на электродинамическую стойкость. На начальном этапе выполняется расчет механического напряжения в материале шины при трехфазном КЗ. Для этого рассчитывается максимальная сила, возникающая в многопредельной балке при трехфазном КЗ.

ЭСиК. №1(46). 2020

29
где k_b – коэффициент формы (для однополосных шин $k_b=1$); $k_{расч}$ – коэффициент, зависящий от взаимного расположения проводников (при расположении фаз по вершинам равнобедренного треугольника $k_{расч}=0,95$, в остальных случаях $k_{расч}=1$).

Момент сопротивления поперечного сечения шины определяется в зависимости от её расположения на изоляторе:
- при горизонтальном расположении
$$W = \frac{bh^2}{6}$$
(7)
- при вертикальном расположении
$$W = \frac{hb^2}{6}$$
(8)

Максимальное механическое напряжение в материале шины:

$$\sigma_{max} = \frac{F^{(3)}_{max}I}{W} \eta,$$
(9)

где λ – коэффициент, зависящий от условия опирания (закрепления) шины, а также числа пролетов конструкции с неразрезными шинами. Для шинных конструкций, длина которых равна длине одного пролета, $\lambda=8$; η – коэффициент динамической нагрузки.

Коэффициент η определяется по номограмме, приведенной в [10]. Для алгоритмизации расчета максимального механического напряжения авторами было получено математическое описание данной номограммы как функции двух переменных: k_b и отношения f_1/f_c. Здесь f_1 – частота собственных колебаний шины, Гц; f_c – частота сети (50 Гц). Частота собственных колебаний определяется следующим образом:

$$f_1 = \frac{9,8596 \sqrt{EJ}}{2\pi l^2 \sqrt{m}},$$
(10)

где J – момент инерции поперечного сечения шины, м4.

Момент инерции, так же как и момент сопротивления, зависит от расположения шины на изоляторе и определяется:
- при горизонтальном расположении
$$J = \frac{bh^3}{12};$$
(11)
- при вертикальном расположении
$$J = \frac{hb^3}{12}.$$
(12)

Зависимость $\eta = f(f_1/f_c, k_b)$ представлена системой уравнений:

$$\eta = 0.1596 + 1.4255 \frac{f_1}{f_c} + 0.1173k_b,$$
при $0.02 \leq \frac{f_1}{f_c} < 0.04;$

$$\eta = 0.3036 + 1.1095 \frac{f_1}{f_c} + 0.1142k_b,$$
при $0.04 \leq \frac{f_1}{f_c} < 0.6;$

$$\eta = -0.9103 + 3.3103 \frac{f_1}{f_c} + 0.158k_b,$$
при $0.6 \leq \frac{f_1}{f_c} < 0.8;$

$$\eta = 1.8 + 1.7319 \cdot 10^{-14} \frac{f_1}{f_c},$$
при $0.8 \leq \frac{f_1}{f_c} < 1.2;$

$$\eta = -0.3025 + 1.7521 \frac{f_1}{f_c},$$
при $1.2 \leq \frac{f_1}{f_c} < 1.7;$

$$\eta = 2.676, \text{при} \frac{f_1}{f_c} \leq 2.5;$$

$$\eta = 10.095 - 2.9676 \frac{f_1}{f_c}, \text{при} 2.5 \leq \frac{f_1}{f_c} < 3;$$

$$\eta = 1.3803 - 0.0654 \frac{f_1}{f_c}, \text{при} 3 \leq \frac{f_1}{f_c} < 6;$$

$$\eta = 1, \text{при} 6 \leq \frac{f_1}{f_c} \leq 10.$$

Далее из базы данных отбираются только те варианты сборных шин, которые удовлетворяют условию:

$$\sigma_{max} \geq \sigma_{ном}.$$
(14)

Одновременно с проверкой шины на электродинамическую стойкость проверяются изоляторы (в данном случае проходные). Для этого в качестве дополнительных исходных данных используются напряжение сети U, кВ, номинальное напряжение изолятора $U_{ном, кВ}$, и минимальная разрушающая сила на изгиб $F_{раз}$. Н.

Алгоритмом предусмотрен расчет механической нагрузки на изоляторы при протекании по проводнику тока трехфазного короткого замыкания:

$$F_{расч} = \sqrt{3} \cdot \frac{(I_{ul}^{(3)} \cdot 10^1)^2}{2a} \cdot I \cdot 10^{-7}.$$
(15)

В результате проектировщику доступны для выбора проходные изоляторы, удовлетворяющие условию:

$$\begin{align*}
U_{ном} & \geq U; \\
F_{расч} & \leq F_{ном}.
\end{align*}$$
(16)

Описанный алгоритм представлен на рисунке.
Алгоритм проверки однофазных шин прямоугольного сечения на термическую и электродинамическую стойкость
ЗАКЛЮЧЕНИЕ

В работе предложен алгоритм автоматизированно- го выбора и проверки однополосных шин прямоуголь- ного сечения, реализованный в САПР [14] - автоматизированной системе проектирования. Разработанный алгоритм основан на действующих руководящих указаниях по расчету токов короткого замыкания и выбору электрооборудова- ния и позволяет проектировщику сократить время на выполнение рутинных расчетов за счет интегрирован- ной в САПР базы данных, а также математического описания номограмм коэффициента динамической нагрузки.

Работа выполняется при поддержке гранта Президента РФ для молодых ученых – кандидатов наук МК-939,2019.8

СИСТОС ЛИТЕРАТУРЫ
14. 3РУ CAD: свидетельство о гос. рег. программы для ЭВМ РФ. № 2019664573 / Вартанова А.В., Панова Е.А., Кун-мель О.Е., Панарина М.С. Заявл. 01.11.2019. Опубл. 08.11.2019.

Поступила в редакцию 10 января 2020 г.

INFORMATION IN ENGLISH

AUTOMATED CHECK OF SINGLE-BAR RECTANGULAR BUSBARS ON THE CONDITIONS OF THERMAL AND ELECTRODYNAMIC WITHSTAND

Evgeniya A. Panova
Ph.D. (Engineering), Associate Professor, Department of Electric Power Supply of Industrial Enterprises, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: ea.panova@magtu.ru. ORCID: https://orcid.org/0000-0001-9392-3346.

Alekandra V. Vargarova
Ph.D. (Engineering), Associate Professor, Department of Electric Power Supply of Industrial Enterprises, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: alexandra-khlaeva@yandex.ru. ORCID: https://orcid.org/0000-0003-4675-7511

Mariya S. Panarina
Student, Department of Electric Power Supply of Industrial Enterprises, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.

When designing dowstep substations, the designer is forced to perform a large volume of routine calculations. These calculations require the designer to be able to navigate in a large volume of regulatory documents, instructions and GOST, as well as catalogs of manufacturers of electrical equipment. The use of CAD for this purpose significantly reduces the time spent by the
designer on the part of the project. However, existing CAD either automate one or several stages of the project or are based on norms and standards not in force in the Russian Federation. The authors of this paper have developed an algorithm of automated selection and checking of rigid buses of rectangular cross-section made from one strip. The algorithm described in the work allows to select the section of the bus according to the condition of its heating with the heavy mode current, as well as to carry out its check for thermal and electrodynamic withstand. The algorithm is characterized by the presence of a mathematical description of the nomogram of the dynamic coefficient, which reduces the possibility of error in its definition and greatly facilitates the work of the designer. The algorithm is based on the current guidelines for calculation of short-circuit currents and selection of electrical equipment. The developed algorithm is implemented in the original CAD of downstep substations, in which the database of electrical equipment is integrated. This approach automates the development of the project in complex. When selecting electrical equipment in this CAD, the designer at any stage has access to the database only those sets and conductors that satisfy the conditions of their operation in prolonged and emergency modes.

Keywords: computer-aided design, thermal withstand, electrodynamic withstand, busbars, switchgear, substation.

REFERENCES

2. LLC «Ascon – Project systems». https://kompas.ru/