The journal is included in the List of peer-reviewed scientific issues publishing main results of Ph.D. thesis in Engineering Science, doctoral thesis, and in the database of Russian Scientific Citation Index (RSCI).

Editorial Board

Head of the Editorial Board:
S.I. Luk’yanyov – Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia.

Editor in Chief:
V.R. Khramshin – Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia.

Executive Editor:
E.A. Panova – Associate Professor, Ph.D. (Engineering), NMSTU, Magnitogorsk, Russia.

Section of Theory and Practice of Automated Electric Drive:
A.S. Sarvarov – Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia; A.E. Kozyrak – Professor, D.Sc. (Engineering), St. Petersburg Mining University, St. Petersburg, Russia; O.A. Kravchenko – Associate Professor, D.Sc. (Engineering), SRSPU (NPI), Novocherkassk, Russia.

Section of Power Engineering:
A.V. Pazderin – Professor, D.Sc. (Engineering), UrFU named after the first President of Russia B.N.Yeltsin, Ekaterinburg, Russia; E.B. Agapitov – Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia; N.F. Dehagarov – Professor, D.Sc. (Engineering), NVNA, Varna, Bulgaria.

Section of Energy- and Resources-Economy:
R.G. Mugalimov – Associate Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia; O.I. Osipov – Professor, D.Sc. (Engineering), MPEI, Moscow, Russia; V.N. Meshcheryakov – Professor, D.Sc. (Engineering), LSTU, Lipetsk, Russia.

Section of Electric Power Supply:
G.P. Kornilov – Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia; Yu.P. Zhuravlev – Ph.D. (Engineering), MMK PJSC, Magnitogorsk, Russia.

Section of Power Electronics, Automation and Control Systems; Technical Systems Dataware and Software:
O.S. Logunova – Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia; S.M. Andreev – Associate Professor, Ph.D. (Engineering), NMSTU, Magnitogorsk, Russia; E.N. Ishmet’ev – D.Sc. (Engineering), KonsOM SKS CJSC, Magnitogorsk, Russia.

Section of Industrial Electro Technology:
A.M. Zyuzev – Associate Professor, D.Sc. (Engineering), UrFU named after the first President of Russia B.N.Yeltsin, Ekaterinburg, Russia; A.L. Karyakin – Senior Research Associate, D.Sc. (Engineering), UFMU, Ekaterinburg, Russia; I.V. Bochkarev – Professor, D.Sc. (Engineering), KSTU, Bishkek, Kyrgyzstan.

Section of Monitoring, Diagnostics and Control of Electric Equipment:
A.S. Karandaev – Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia; I.M. Yachikov – Professor, D.Sc. (Engineering), NMSTU, Magnitogorsk, Russia.

Technical Editors:
N.V. Kutekina – NMSTU, Magnitogorsk, Russia; E.A. Khramshina – NMSTU, Magnitogorsk, Russia.
СОДЕРЖАНИЕ
ЭЛЕКТРО- И ТЕПЛОЭНЕРГЕТИКА .. 4
Панова Е.А., Ириков А.С., Дубина И.А., Патщин Н.Т.
Расчет экономических составляющих целевой функции алгоритма определения оптимального варианта схемы распределительного устройства подстанции с высшим напряжением 35 кВ и более .. 4
Паздерин А.В., Чусовитин П.В., Шабалин Г.С.
Поиск ближайшего предельного режима электроэнергетической системы на основе обобщенного метода Ньютона.......................... 12
ТЕОРИЯ И ПРАКТИКА АВТОМАТИЗИРОВАННОГО
ЭЛЕКТРОПРИВОДА .. 19
Богданов Д.Ю., Кравченко О.А.
Разработка и реализация адаптивного регулятора перемещения устройства обезвреживания полезного груда тренажера для подготовки космонавтov...................... 19
Мещеряков В.Н., Бойков А.И., Ласточкин Д.В.
Система плавного пуска асинхронного двигателя с фазным ротором .. 24
Ермолаев А.И., Плехов А.С., Титов Д.Ю., Черныш Е.А.
Оценка мощности вибрации в электроприводе 30
ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА, АВТОМАТИКА
И СИСТЕМЫ УПРАВЛЕНИЯ ... 38
Радченко А.А., Маклаков А.С., Цзин Тао
Применение метода роя частиц для определения углов переключения в алгоритме широтно-импульсной модуляции с удалением выделенных гармоник.............. 38
Абдулгелев И.Р., Храмчихин Т.Р., Корнилов Г.П.,
Абдулгелевка Р.Р., Косматов В.И.
Формирование шаблонов переключений трехфазного инвертора с векторной широтно-импульсной модуляцией . .45
МОНИТОРИНГ, КОНТРОЛЬ И ДИАГНОСТИКА
ЭЛЕКТРООБОРУДОВАНИЯ .. 53
Метельков В.П., Зозев А.М., Черных И.В.
Система оценки остаточного ресурса изоляции обмотки асинхронного двигателя на основе емкостных токов утечки ... 53
ИНФОРМАЦИОННОЕ, МАТЕМАТИЧЕСКОЕ И ПРОГРАММНОЕ
ОБЕСПЕЧЕНИЕ ТЕХНИЧЕСКИХ СИСТЕМ 59
Ошурков В.А., Егорова Л.Г.,
Леднёв А.В., Антипин И.Д.
Человеко-машинная система насыпной плотности шихтовых материалов дуговой сталеплавильной печи: функция объёмной насыпной плотности и семиорная система . .59
ОБЗОРНАЯ СТАТЬЯ ... 67
Инанченев Е.И., Чистяков Д.В.,
Панов А.Н., Бобрь Е.З., Арабаджян М.
Системы виброанализа, вибриконтроля и вибродиагностики промышленного оборудования . .67
СВЕДЕНИЯ ОБ АВТОРАХ .. 74

CONTENT
POWER ENGINEERING .. 4
Panova E.A., Irikov A.S.,
Dubina I.A., Patshin N.T.
Calculation of Economic Components of Target Function of
the Algorithm for Determining the Optimal Option of
Scheme of Substations Distribution Device with the High
Voltage of 35 kV and Above ... 4
Pazderin A.V., Chusovitin P.V., Shabalin G.S.
Search of a Closest Limit Load
Operation Mode of a Grid on the Basis
of Generalised Newton Method 12
TEORуЯ AND PRACTICE OF AUTOMATED
ELECTRIC DRIVE .. 19
Bogdanov D.Yu., Kravchenko O.A.
Development and Realization of Adaptive Controller
of Real Weight Unloading Motion Device of Simulator
for Cosmonauts Training ... 19
Mescheryakov V.N., Boikov A.I., Lastochkin D.V.
System of Soft Start for Induction Motor
with Phase Rotor ... 24
Ermolaev A.I., Plekhov A.S.,
Titov D.Yu., Chernov E.A.
Vibration Power Estimation in Electric Drive 30
POWER ELECTRONICS, AUTOMATION
AND CONTROL SYSTEMS ... 38
Radionov A.A., Maklakov A.S., Jing Tao
Using of Particle Swarm Optimization
for Selective Harmonic
Elimination Technique .. 38
Abdulvelev I.R., Kranshin T.R., Kornilov G.P.,
Abdulvelevka R.R., Kosmatov V.I.
Switching Patterns Formation
of a Three-Level Inverter with Space Vector
Width-Pulse Modulation ... 45
MONITORING, DIAGNOSTICS AND CONTROL
OF ELECTRIC EQUIPMENT ... 53
Metelkov V.P., Ziuzev A.M., Chernykh I.V.
System for Estimating the Residual Resource
of Induction Motor Winding Insulation Based
on Capacitive Leakage Currents 53
TECHNICAL SYSTEMS DATABWARE
AND SOFTWARE .. 59
Oshurkov V.A., Egorova L.G.,
Lednov A.V., Antipinov I.D.
Method of Metal Scrap Fragments
Function Construction
of the Poured Bulk Density
in an Electric Arc Furnace ... 59
REVIEW PAPERS ... 67
Iskhetiev E.N., Chistyakov D.V.,
Panov A.N., Bodrov E.E., Vrabel M.
Vibration Protection, Control and Analysis
Systems for Industrial Application 67
INFORMATION ABOUT THE AUTHORS 74
РАСЧЕТ ЭКОНОМИЧЕСКИХ СОСТАВЛЯЮЩИХ ЦЕЛЕВОЙ ФУНКЦИИ АЛГОРИТМА ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО ВАРИАНТА СХЕМЫ РАСПРЕДЕЛИТЕЛЬНОГО УСТРОЙСТВА ПОДСТАНЦИИ С ВЫСЫМ НАПРЯЖЕНИЕМ 35 кВ И БОЛЕЕ

Проектирование электрической части распределительных устройств подстанций в основном осуществляется без учета экономических составляющих, и проекты в данном случае должны соответствовать только нормативным документам. Исключение из рассмотрения экономических факторов при проектировании распределительных устройств подстанций обусловлено отсутствием времени у инженера-проектировщика, занятого разработкой объемной проектной документации, а проведение дополнительных расчетов в условиях подходящих к концу сроков исполнения проекта полностью исключает возможность комплексного учета всех факторов при выборе схемы распределительного устройства. В работе предлагается подход, позволяющий определять некоторые экономические составляющие затрат на проектирование, сооружение, монтаж, наладку и эксплуатацию распределительных устройств подстанций напряжением 35 кВ и выше. Разработанный алгоритм адаптирован к условиям системы автоматизированного проектирования «ОФУ CAD», позволяющей осуществить разработку и формирование документации при проектировании распределительных устройств подстанций с возможностью учета экономических показателей. В данной статье приводятся алгоритмы расчета только экономических показателей (капитальных вложений, эксплуатационных издержек на ремонт и обслуживание) распределительных устройств подстанций. В дальнейшем планируется к разработке алгоритм определения экономического ущерба от перерыва электроснабжения внешних источников нагрузки, питающейся от проектируемой подстанции, и его внедрения в условия САПР. Разрабатываемый алгоритм определения экономически целесообразного варианта схемы распределительного устройства подстанции отвечает требованиям норм и правил проектирования указанных объектов электроэнергетики. Результаты работы применимы в качестве автоматизированного рабочего места инженера-проектировщика электротехнического отдела проектной организации.

Ключевые слова: система автоматизированного проектирования, технико-экономический расчет, издержки, капитальные вложения, ущерб от перерыва электроснабжения, инфляция, целевая функция, оптимизация, приведенные затраты.

ВВЕДЕНИЕ

Сопоставление и анализ всех технико-экономических показателей позволяет произвести выбор наилучшего решения. Экономичность варианта должна оцениваться с учетом, как первоначальных вложений, так и текущих затрат. Поэтому при экономических расчетах рекомендуется в качестве оценки экономичности метод срока окупаемости, соизмеряющего капитальные вложения с будущими издержками производства.

Авторами в работе [5] приведена оценка эффективности капитальных вложений, для выявления которой используются показатели общей и сравнительной эффективности. Экономическим критерием, по которому определяют наилучшей вариант, является минимум приведенных затрат.

© Панова Е.А., Ирихов А.С., Дубина И.А., Патшин Н.Т., 2019

В работах [7-11] приведена сравнительная эффективность вариантов развития электрической сети. Обоснование решений при проектировании электрических сетей осуществляется на основе технико-экономического сопоставления вариантов схем и параметров сетей путем оценки их сравнительной эффективности.

Геркуловым А.А. в [9] разработана экономико-математическая модель, связывающая технические параметры, стоимостные характеристики и режимы работы ЛЭП любого класса напряжения и назначения.

В работе [10] проведено технико-экономическое сравнение вариантов трансформаторных подстанций традиционного и современного использования по показателям дисконтированных затрат на сооружение и эксплуатацию в течение срока службы.

Гулзовым С.С. в работе [14] рассмотрены технико-экономические характеристики сельских электрических сетей 10 и 0,4 кВ. При оценке были изучены линии электропередачи 10 кВ и 0,4 кВ, также трансформаторные подстанции 10/0,4 кВ. При технико-экономической
оценке электросетевого хозяйства 0,4–10 кВ района выявлен износ сетей, их остаточная стоимость, степень надежности работы сетей.

В [15] рассмотрена технико-экономическая оценка трансформаторных подстанций напряжением 6-10/0,4 кВ. Разработана схема данных, которая может быть использована при составлении алгоритма компьютерной программы выбора типа ТП, имеющей распределительное устройство (РУ) первичного напряжения. Представлены результаты технико-экономического сравнения вариантов двухтрансформаторной подстанции с РУ высокого напряжения на базе камер типа КСО и КРУЭ.

Таким образом, существующие подходы технико-экономических расчетов в области электроэнергетики разработаны более 30 лет назад, и ими до сих пор используются специалисты-проектировщики.

В связи с этим актуальным является разработка экономико-математической модели, связывающей технические параметры реконструируемым или вновь сооружаемым электроэнергетическим системам и режимы их работы с экономическиыми показателями; использование современных экономических критериев выбора оптимальных проектных решений.

ОПРЕДЕЛЕНИЕ КАПИТАЛЬНЫХ ВЛОЖЕНИЙ В СТРОИТЕЛЬСТВО РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ ПОДСТАНЦИИ

Алгоритм автоматизированного расчета капитальных вложений в строительство подстанции адаптирован к условиям разработанной системы автоматизированного проектирования [22] и базе данных электрооборудования [23]. Блок-схема указанного алгоритма приведена на рис. 1, Алгоритм расчета построен на основании методики, приведенной в [5-6].

Капитальные вложения (K), как и все экономические показатели сравниваемых вариантов, должны определяться в прогнозных ценах одного уровня и по источникам равной достоверности.

Исходные данные для расчета (блок 1, рис. 1) предполагают:
- ручной ввод типа и количества силовых трансформаторов (n) и ячеек выключателей ВН (m) и НН (k) в САПР [22];
- ручной ввод местоположения подстанции (региональная принадлежность), главной схемы РУ и номинального напряжения в САПР [22];
- ручной ввод индекса цен по капиталным вложениям объекта электроэнергетики на год проектирования ПС по отношению к уровню цен 2000 г. в САПР [22].
Определение стоимости силовых трансформаторов и ячеек выключателей ВН и НН (блок 2, 3 и 4, рис. 1) осуществляется по формулам (1)-(3), исходя из количества и типа оборудования. Источником стоимостных показателей является база данных электрооборудования [23]:

\[K_{тр} = \sum_{i=1}^{n} K_i, \]

где \(K_{тр} \) – капитальные вложения в силовые трансформаторы; \(K_i \) – стоимость i-го силового трансформатора; \(n \) – количество силовых трансформаторов.

\[K_{в.у.} = \sum_{j=1}^{m} K_j, \]

где \(K_{в.у.} \) – капитальные вложения в ячейки выключателей стороны ВН; \(K_j \) – стоимость j-й ячейки выключателя стороны ВН; \(m \) – количество ячеек выключателей стороны ВН.

\[K_{в.у.} = \sum_{p=1}^{k} K_p, \]

где \(K_{в.у.} \) – капитальные вложения в ячейки выключателей стороны НН; \(K_p \) – стоимость p-й ячейки выключателя стороны НН; \(k \) – количество ячеек выключателей стороны НН.

Определение стоимости оборудования подстанции (блок 5, рис. 1) осуществляется сложением результатов блока 2, 3 и 4 по выражению

\[K_{обр} = K_{тр} + K_{в.у.} + K_{в.у.}, \]

Для определения стоимости строительства подстанции напряжением 220 кВ и выше должны быть учтены затраты на организацию противоаварийной автоматики (блок 6, рис. 1). Источником стоимости противоаварийной автоматики является база данных УСП.

Стоимость постоянной части затрат по ПС (блок 7, рис. 1) учитывает подготовку и благоустройство территории, ОПУ, устройство собственных нужд ПС, систему оперативного постоянного тока, компрессорную, внутрприплощадочное водоснабжение, канализацию и подъездные дороги, средства связи и телемеханики, наружное освещение и ограду. Постоянная часть затрат принимается с учетом схемы электрических соединений и высшего напряжения ПС. Источником стоимости постоянной части затрат является база данных УСП.
Рис. 1. Блок-схема алгоритма расчета капитальных вложений в строительство подстанции напряжением 35 кВ и выше

Определение capitalных вложений в electro-
оборудование ПС (блок 8, рис. 1) осуществляется по (5) с учетом повышающего зонального коэффициента к базисной стоимости электроустановочных объектов. Значение повышающего зонального коэффициента зависит от региональной принадлежности подстанции:

\[K_z = (K_{обр} + C_{ш} + C_{доп}) \cdot K_{зон}, \]

где \(K_z \) – капитальные вложения в оборудование подстанции; \(K_{обр} \) – стоимость оборудования подстанции; \(C_{ш} \) – стоимость противозварной автоматики; \(C_{доп} \) – стоимость постоянной части затрат; \(K_{зон} \) – повышающий зональный коэффициент.

Стоимость строительства подстанции (блок 9 и 10, рис. 1) зависит от уровня напряжения, на которое сооружается подстанция, и определяется по выражениям (6) и (7).

Для строительства подстанций на напряжение
220 кВ

\[C_{стр.пс} = K_\Sigma \cdot 1.21. \] \hfill (6)

Для строительства подстанций на напряжение 35, 110 кВ

\[C_{стр.пс} = K_\Sigma \cdot 1.23. \] \hfill (7)

Стоимость постоянного отвода земельного участка (блок 11, рис. 1) для ПС принимается с учетом расчетных значений площади земельного участка под ПС, определяется по формуле (8). Площадь постоянного отвода земельного участка зависит от схемы электрических соединений и напряжения сооружаемой подстанции. Стоимость отчуждаемых земельных участков принимается на основе «Нормативов стоимости освоения новых земель изымаемых сельскохозяйственных угодий для неселскохозяйственных нужд», утвержденных постановлением Правительства РФ от 28.01.1993 г. №77 (с изменениями от 07.05.2003 г.). Источником является нормативная цена земли в субъектах РФ и представляет собой площадь постоянного отвода земли под подстанции, которая вписана в базу данных УСИ:

\[C_{зем.уч} = (m \cdot S_{пм} + 0.5) \cdot C_{земн}, \] \hfill (8)

где \(C_{зем.уч} \) – стоимость постоянного отвода земельного участка; \(S_{пм} \) – площадь постоянного отвода земельного участка; \(C_{земн} \) – стоимость отчуждаемых земельных участков.

Суммируя капиталные вложения в электрооборудование, стоимость строительства подстанции и стоимость постоянного отвода земельного участка под строительство, получаем необходимый объем капитальных вложений на строительство подстанции (блок 12, рис. 1). После чего производим пересчет стоимости затрат на строительство ПС в индексах цен текущего года по выражению

\[K_{пс} = (K_\Sigma + C_{стр.пс} + C_{зем.уч}) \cdot k_{инф}, \] \hfill (9)

где \(K_\Sigma \) – капитальные вложения в оборудование подстанции; \(C_{стр.пс} \) – стоимость строительства подстанции; \(k_{инф} \) – коэффициент инфляции относительно 2000 г.

АЛГОРИТМ РАСЧЕТА ИЗДЕРЖЕК

Ежегодные эксплуатационные издержки производства представляют собой сумму всех отчислений и расходов, связанных с эксплуатацией данной электроустановки.

Алгоритм расчета эксплуатационных издержек подстанции приведен на рис. 2.

Методика расчета основана на данных, приведенных в [5-6]. Исходные данные для расчета (блок 1, рис. 2) предполагают:

– ручной ввод типа и количества силовых трансформаторов \(n \);
– ручной ввод мощности нагрузки трансформатора;
– ручной ввод числа часов использования наибольшей нагрузки и стоимости потерь электроэнергии.

Определение общих годовых эксплуатационных расходов по ПС в зависимости от уровня напряжения (блоки 2 и 3, рис. 2) осуществляется по следующим формулам

Для подстанций с высшим напряжением 220 кВ

\[I_{вкп} = K_{обр} \cdot (4.9 + 6.7) / 100, \] \hfill (10)

где \(K_{обр} \) – капитальные вложения в оборудование ПС; 4.9 – отчисления на обслуживание и ремонт в процентах от первоначальных капиталных вложений в оборудование подстанции с высшим напряжением 220 кВ; 6.7 – отчисления на амортизацию в процентах от первоначальных капиталных вложений в оборудование подстанции.
Электро- и теплоэнергетика

Рис. 2. Блок-схема алгоритма расчета эксплуатационных издержек подстанции напряжением 35 кВ и выше

Для подстанций с высшим напряжением 35 и 110 кВ

\[I_{\text{эксп}} = K_{\text{опр}} \cdot (5,9 + 6,7) / 100, \]
где 5,9 – отчисления на обслуживание и ремонт в процентах от первоначальных капитальных вложений в оборудование подстанции с высшим напряжением 35 и 110 кВ.

Определение стоимости годовых потерь электроэнергии (блок 7, рис. 2) осуществляется по формуле

\[\Delta I = b \cdot \left(\Delta P_{\text{хл}} \cdot 8700 + \Delta P_{\text{опр}} \cdot \tau \right), \]
где \(b \) – стоимость потерянной электроэнергии; \(\Delta P_{\text{хл}} \) – суммарные потери холодного хода трансформаторов; \(\Delta P_{\text{опр}} \) – суммарные нагрузочные потери трансформаторов; \(\tau \) – время наибольших нагрузок.

Суммируя все годовые эксплуатационные расходы по ПС и стоимость годовых потерь электроэнергии, получим эксплуатационные издержки (блок 8, рис. 2), которые определяются по выражению

\[I = I_{\text{эксп}} + \Delta I. \]

Расчет стоимости строительства и эксплуатации подстанции с ВН 220 кВ

Осуществим расчет стоимости строительства подстанции по заданным исходным данным приведенным в табл. 1.

С использованием разработанных алгоритмов и системы автоматизированного проектирования [22] получим следующие результаты расчета (табл. 2).

Вывод результатов расчета осуществляется в среду MS Excel, что позволяет упростить дальнейшую обработку результатов расчетов при необходимости оценки всех возможных вариантов схем распределительного устройства (при условии если схема ВН не задана).

Таблица 1

<table>
<thead>
<tr>
<th>Заданное условие</th>
<th>Значение согласно техническому заданию</th>
</tr>
</thead>
<tbody>
<tr>
<td>Месторасположение ПС</td>
<td>Поволжье</td>
</tr>
<tr>
<td>Мощность трансформаторов</td>
<td>63 МВА</td>
</tr>
<tr>
<td>Тип и количество трансформаторов</td>
<td>2×3хТРДН-63000/220</td>
</tr>
<tr>
<td>Главные схемы электрических соединений</td>
<td>Две рабочие с.п.</td>
</tr>
<tr>
<td>Количество присоединений на стороне ВН</td>
<td>8</td>
</tr>
<tr>
<td>ЗРУ-10 кВ - 4-х секционное, рассчитанное на установку 38 ячеек вакуумных выключателей</td>
<td></td>
</tr>
<tr>
<td>ПА принята при количестве присоединений 220 кВ более двух</td>
<td></td>
</tr>
<tr>
<td>Индекс цен по капиталным вложениям на текущий год</td>
<td>5,2995</td>
</tr>
<tr>
<td>Стоимость потерь электроэнергии, (\text{руб./кВт-ч})</td>
<td>2,82</td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>Составляющие затрат</th>
<th>Номер блока</th>
<th>Расчет затрат</th>
<th>Величина затрат, тыс. руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стоимость силовых трансформаторов</td>
<td>2, рис.1</td>
<td>2,9800</td>
<td>19600</td>
</tr>
<tr>
<td>Стоимость ячеек 110 кВ</td>
<td>3, рис.1</td>
<td>8,12500</td>
<td>100000</td>
</tr>
<tr>
<td>Стоимость ячеек 10 кВ</td>
<td>4, рис.1</td>
<td>38,85</td>
<td>3230</td>
</tr>
<tr>
<td>Стоимость оборудования ПС</td>
<td>5, рис.1</td>
<td></td>
<td>122830</td>
</tr>
<tr>
<td>Противоаварийная автоматика</td>
<td>6, рис.1</td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td>Постоянная часть затрат</td>
<td>7, рис.1</td>
<td></td>
<td>52000</td>
</tr>
<tr>
<td>Капитальные вложения в оборудование ПС</td>
<td>8, рис. 1</td>
<td></td>
<td>176030</td>
</tr>
<tr>
<td>Стоимость строительства ПС с учетом сопутствующих затрат</td>
<td>9, рис. 1</td>
<td>1,21·176030</td>
<td>212996,3</td>
</tr>
<tr>
<td>Стоимость постоянного отвода земельного участка (ОРУ и ЗРУ)</td>
<td>11, рис. 1</td>
<td>(1,6·8+0,5)40</td>
<td>532</td>
</tr>
<tr>
<td>Капитальные вложения на строительство ПС</td>
<td>12, рис. 1</td>
<td></td>
<td>389558,3</td>
</tr>
<tr>
<td>С учетом коэффициента инфляции на 2019 г.</td>
<td>212996,3-5,29</td>
<td>206446</td>
<td></td>
</tr>
<tr>
<td>Изделия на обслуживание и ремонт</td>
<td>2, рис. 2</td>
<td>(4,9+6,7) 206446</td>
<td>239477,8</td>
</tr>
<tr>
<td>Изделия на потерю электроэнергии</td>
<td>7, рис. 2</td>
<td>2,82 (2 70 8764+4600 0,5 266(86/63))3</td>
<td>6673,39</td>
</tr>
<tr>
<td>Эксплуатационные издержки</td>
<td>8, рис. 2</td>
<td>239477,8+ 6673,99</td>
<td>6912876,29</td>
</tr>
</tbody>
</table>

Заключение

Разработанные алгоритмы определения капитальных вложений в строительство и издержек на эксплуатацию подстанций напряжением 35 кВ и выше адаптированы к САПР ОРУ САД и к указанной базе данных электрооборудования и позволяют осуществлять автоматизированный расчет экономических показателей, необходимых при оценке инвестиций.

В перспективе разработанный подход позволит осуществлять технико-экономические сопоставления возможных, с точки зрения норм и правил проектирования объектов, вариантов схем распределительных устройств исследуемых электроустановок.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-37-00115.

Список литературы

2. Häfele W., Program Leader. Energy in a finite world: a
15. Сталович В.В., Раджевич В.Н. Технико-экономическая оценка трансформаторных подстанций напряжением 6-10/0,4 кВ с различными типами заземлительных устройств // Энергетика. 2011. №3. С. 26-40.
22. Свидетельство о регистрации программы для ЭВМ 2018660517 Российской Федераци, ORU CAD / Вартанова А.В., Папова Е.А., Хатюнина Т.В., Конюшенко В.С., Багаева Х.М.; заявлитель ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова». № 2018618175; заявл. 30.07.2018; опубл. 23.08.2018.

Поступила в редакцию 09 января 2019 г.

INFORMATION IN ENGLISH

CALCULATION OF ECONOMIC COMPONENTS OF TARGET FUNCTION OF THE ALGORITHM FOR DETERMINING THE OPTIMAL OPTION OF SCHEME OF SUBSTATIONS DISTRIBUTION DEVICE WITH THE HIGH VOLTAGE OF 35 KV AND ABOVE

Evgeniya A. Panova

Ph.D. (Engineering), Associate Professor, Electric Power Supply of Industrial Enterprises Department, Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: ea.panova@magtu.ru. ORCID: https://orcid.org/0000-0001-9392-3346.

Aleskandr S. Irikhov

Student, Electric Power Supply of Industrial Enterprises Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: irihovalalexandr@gmail.com.

Irina A. Dubina
The design of the electrical part of the switchgear of substations is mainly carried out without taking into account the economic components and the projects in this case must comply only with regulatory documents. The exclusion of economic factors from consideration when designing switchgears for substations is also due to the lack of time for a design engineer involved in the development of large-scale project documentation and additional calculations under the conditions suitable for the end of the project execution period completely exclude the possibility of integrated accounting of all factors when choosing a switchgear circuit. The paper proposes an approach to determine some of the economic components of the costs for the design, construction, installation, commissioning and operation of switchgears for substations of 35 kV and above. The developed algorithm is adapted to the conditions of computer-aided design "ORU CAD", which allows for the development and documentation of the design of switchgear substations with the possibility of taking into account economic indicators. This article provides algorithms for calculating only economic indicators (capital investment, repair and maintenance costs) of substation switchgears. In the future, it is planned to develop an algorithm for determining the economic damage from the interruption of the power supply to external sources of load, which is powered by the designed substation, and its implementation in the specified CAD system. The developed algorithm for determining the economically viable options for the substation switchgear scheme meets the requirements of the norms and rules for the design of these power industry facilities. The results of the work are applicable as an automated workstation of the electrical engineer of a design organization.

Keywords: computer-aided design, techno-economic justification, accounts, capital investment, supply interruption costs, escalation, objective function, optimization, discounted costs.

REFERENCES

15. Stalovich V.V., Radkevich V.N. Technical and Economic Assessment of 6-10/0.4 kV Transformer Sub-Stations with Various Types of High-Voltage Switchgear. Energetika [Power industry], 2011, no. 3, pp. 26-40. (In Russian)

ПОИСК БЛИЖАЙШЕГО ПРЕДЕЛЬНОГО РЕЖИМА ЭЛЕКТРОЭНЕРГЕТИЧЕСКОЙ СИСТЕМЫ НА ОСНОВЕ ОБОБЩЕННОГО МЕТОДА НЬЮТОНА

В статье представляется альтернативный подход для определения границ области существования режима. Определение границ области существования режима необходимо для оценки минимального имеющегося запаса по устойчивости. Минимальный запас по устойчивости – это основной критерий, применяемый Системными Операторами, чтобы обеспечивать управляющие воздействия для поддержания устойчивости энергообъекта. Предлагаемый в статье метод является прямым, но обладает преимуществом над традиционными прямыми методами. Он основан на оптимизационной процедуре и позволяет оценить расстояние до границы области существования режима. Описываемый подход основан на использовании обобщенного метода Ньютонова и суммы квадратов невязок уравнений установившегося режима. В статье представлена концепция разработанного метода на простых моделях электроэнергетических систем (PV-узел – шины бесконечной мощности, 2 PV-узла – шины бесконечной мощности). Особое внимание в статье уделяется вопросу сходимости предложенного метода.

Ключевые слова: устойчивость электроэнергетических систем, критерии устойчивости, аперIODическая статическая устойчивость, запас устойчивости, противоаварийное управление.

ВВЕДЕНИЕ

Функционирование современной интеллектуальной энергообъекта невозможно без выполнения требований по качеству и надежности. Одним из основных показателей надежности энергосистемы является обеспечение нормативных запасов по статической устойчивости в нормальных и послеаварийных режимах. Нормативные запасы используются Системными Операторами разных стран для оценки устойчивости энергообъектов и определения управляющих воздействий для ее обеспечения. Для оценки запасов необходимо определять ближайшие предельные режимы для каждого из исследуемых режимов.

Существующие методы для определения ближайшего предельного режима можно разделить на две группы: прямые методы, связанные с решением оптимизационных задач [1, 2], подходы, основанные на использовании левого собственного вектора вырожденной матрицы Якоби в предельном режиме [3], и методы, основанные на последовательном уточнении [4]. В мировой практике более широко распространен метод уточнения [5, 6]. Кроме перечисленных выше методов для оценки устойчивости все активнее применяется модифицированный метод, основанный на анализе собственных чисел линеаризованной динамической модели энергообъекта [7-9]. Анализ динамической модели позволяет оценивать как апериодическую, так и колебательную устойчивость. Данный подход успешно применяется для анализа устойчивости распределенной генерации [10].

Прямые методы анализа статической устойчивости заключаются в решении оптимизационных задач. Существуют различные целевые функции, используя которые с различной степенью достоверности и точности можно найти ближайший предельный режим.

Метод уточнения при поиске предельного режима заключается в изменении узловых мощностей в заданном режиме до достижения границы области существования режима и зависит от экспертной оценки наиболее вероятного направления изменения мощностей. Зависимость от заданного направления изменения режима может привести к неточному определению запаса по статической устойчивости.

В этой связи можно предположить, что прямые методы будут лучшим инструментом решения задачи поиска ближайшего предельного режима, но обычные прямые методы [13, 14] не слишком надежны вследствие проблем начальных приближений и других сложностей [4]. Поэтому необходимо предложить та-кую процедуру, которая позволит решить обозначенные выше проблемы, обеспечив надежное определение ближайшего предельного режима.

В статье предлагается метод поиска ближайшего предельного режима, основанный на использовании целевой функции – суммы квадратов невязок уравнений устанавливающегося режима. Представляемый подход включает в себя определение начальных условий и использование усовершенствованного обобщенного метода Ньютонова для надежного определения ближайшего предельного режима. Разрабатываемый метод может применяться для оценки запаса по устойчивости «онлайн» благодаря его высоким эксплуатационным качествам при поиске предельного режима. Метод был протестирован на моделях различных энергообъектов для поиска установившегося и предельных режимов и продемонстрировал высокую сходимость к искомым режимам.
ПОСТАНОВКА ЗАДАЧИ И ПРИМЕРЫ РЕШЕНИЯ

Авторским коллективом поиск ближайшего предельного режима представляет собой решение оптимизационной задачи. Евклидово расстояние в пространстве мощностей от режимной точки до границы области существования режима используется для поиска предельного режима, на основании его величины делается вывод о близости границы к режимной точке. Представленные в статье исследования представляют собой развитие традиционного направления исследований Уральской электроэнергетической научной школы [15-17].

В качестве целевой функции используется сумма квадратов невязок уравнений установившихся режимов. То есть математически целевую функцию можно записать как

\[\Phi = \overline{F}(x, y)^T \cdot \overline{F}(x, y), \]

где \(\overline{F}(x, y) \) – вектор невязок уравнений установившегося режима (УУР); \(x \) – вектор параметров режима (действующих значений и углов напряжений); \(y \) – вектор заданных переменных (уровней мощностей и напряжения PV-узлов).

Для систем, состоящих из одной генераторов, используются только невязки по активной мощности, а в вектор параметров режима входят только углы. В случае системы с PQ-узлами целевая функция может быть записана в соответствии с (1); без учета состояния выхода нагрузки целевая функция представляет собой квадрат невязок УУР по активной и по реактивной мощности для всех PQ-узлов, а также по активной мощности для PV узлов.

Рис. 1 иллюстрирует предельный режим (БПР) для трехфазовой схемы, который можно определить по мощности данной фазы, ближайшей в схеме на рис. 1. Параметры мощности трехфазной схемы: напряжения PV-узла (\(U_{\text{ген}} \)) и \(\text{ШБМ} (\text{U}_{\text{сист}}) \) 110 кВ, индуктивное сопротивление \(x_{\text{на}} \) составляет 10 Ом, пределы по реактивной мощности у PV-узла отсутствуют.

Для данной схемы можно записать следующие уравнения узлового напряжения и цепевой функции:

\[F = \frac{U_{\text{сист}}}{x_{\text{на}}} \sin \delta - P_{\text{ген}}, \]

\[\Phi = \left(\frac{U_{\text{сист}}}{x_{\text{на}}} \sin \delta - P_{\text{ген}} \right)^2, \]

где \(\delta \) – угол между напряжениями генератора и системы.

Рис. 1. Иллюстрация оценки БПР

Рис. 2. Схема энергосистемы PV-узел – ШБМ

Задача в качестве генерации в PV-узле 400 МВт, были построены графики невязки УУР и целевой функции в зависимости от угла \(\delta \), представленные на рис. 3. Как видно из него, точкам устойчивого и неустойчивого равновесия (1 и 3) соответствуют локальные минимумы целевой функции. Точка 2 (максимум пропускной способности сети) совпадает с одним из максимумов целевой функции.

Для нахождения интересующего экстремума, соответствующего максимуму пропускной способности сети, предполагается использовать обобщенный метод Ньютона. Рекуррентная процедура в рамках данного метода для обсуждаемой простейшей энергосистемы может быть записана следующим образом:

\[\Delta x_i = f^{(i-1)}(x_i) - x_i, \]

где изменение параметра на итерации \(\Delta x_i = x_i - x_i^{(i-1)} \), \(f^{(i-1)} \) – первая производная целевой функции \(\Phi \), вычисленная на итерации \(i-1 \); \(f^{(i-1)} \) – вторая производная целевой функции \(\Phi \), вычисленная на итерации \(i-1 \).

Для рассматриваемой энергосистемы первая и вторая производные целевой функции \(\Phi \) можно записать в следующем виде:

\[f'^2 = \left(\frac{U_{\text{сист}}}{x_{\text{на}}} \right) \sin 2\delta - \frac{2P_{\text{ген}}U_{\text{сист}}}{x_{\text{на}}} \cos \delta; \]

\[f'' = 2\left(\frac{U_{\text{сист}}}{x_{\text{на}}} \right) \cos 2\delta + \frac{2P_{\text{ген}}U_{\text{сист}}}{x_{\text{на}}} \sin \delta. \]
Графики первой и второй производной целевой функции от угла между векторами напряжений генератора и системы (при генерации 400 МВт) приведены на рис. 4. Также на нем приведены зоны сходимости к различным экстремумам в зависимости от знаков производных (зоны выделены черным цветом). Как можно увидеть, для достижения предельного с точки зрения возможной передачи мощности от генератора в систему режима в качестве начальных условий необходимо использовать угол из достаточно узкого диапазона, что значительно затрудняет задачу поиска предельного режима. Однако если в итерационную процедуру ввести контроль знака второй производной в форме

\[\begin{align*}
 f'' > 0, & \quad x_i = x_{i-1} + \Delta x_i; \\
 f'' < 0, & \quad x_i = x_{i-1} - \Delta x_i,
\end{align*} \]

то можно добиться значительного увеличения зоны сходимости к искомому экстремуму целевой функции. Из любого, незначительно угнутого по сравнению с исходными 400 МВт генерации, режима можно достичь предельного режима с точки зрения выдачи мощности генератором (новые зоны сходимости изображены на графике внизу).

Еще один способ достижения предельного режима, который не содержит контроля знака второй производной целевой функции \(f'' \) в итерационной процедуре, заключается в использовании в качестве начальных условий параметров какого-либо установленного режима для рассматриваемой системы, а в качестве заданной угловой мощности (хотя бы для одного угла) заводимо недостижимого значения (запредельного, то есть явно находящегося за границами области существования режима в пространстве мощностей). Для тестовой схемы ПВ-узел – ШБМ для наглядной демонстрации второго подхода задаем генерацию в узле ПВ 1400 МВт. При этом графики невязки УУР и целевой функции представлены на рис. 5. Как можно увидеть, у целевой функции остается только 2 экстремума: предельному режиму с точки генерации активной мощности соответствует минимум целевой функции, а потенциально возможному максимуму потребления соответствует максимум \(F \).

Для завышенного значения генерации графики первой и второй производной целевой функции будут выглядеть так, как показано на рис. 6. Как видно из представленных на нем областей сходимости, параметры, соответствующие установленным режимам с выдачей генерации в сеть, попадают в область притяжения к пределу по выдаче генерирующей мощности.
Рис. 5. Угловая характеристика и целевая функция для энергосистемы PV-узел – ШБМ с запределенной величиной мощности генерации

При оценке области сходимости к искомому экстремуму необходимо учитывать недопустимость чрезмерно больших шагов в ходе итерационного процесса, так как в их результате можно выйти за границы области притяжения интересующего экстремума даже при наличии подходящих начальных условий.

Предотвратить данную проблему можно с помощью использования ограничения по максимальной величине шага (сделать это можно, как ограничив абсолютную величину шага, так и относительную величину (за базу принимая величину параметров режима на шаге i-1).

При переходе к многомерному случаю ближайшему предельному режиму целевой функции (1) будет соответствовать седьмая точка, так как значение целевой функции будет возрастать до достижения границы области существования режима, а по ее достижению – убывать. При этом БПР будет соответствовать точке касания линии равного значения целевой функции границы области существования режима. При переходе к многомерному случаю по аналогии с (4) рекуррентная формула для итерационной процедуры поиска экстремума целевой функции, соответствующего ближайшему предельному режиму, будет выглядеть следующим образом:

$$
\mathbf{H}^{(i+1)} \mathbf{x}_i = \nabla^{(i+1)},
$$

где \mathbf{H} – матрица вторых производных целевой функции по параметрам режима \mathbf{x}_i; \mathbf{V} – вектор параметров режима (углов для всех PV и PQ-узлов, а также напряжения PQ-узлов); ∇ - градиент (вектор первых производных по параметрам режима \mathbf{x}_i) целевой функции.

Для обеспечения надежной сходимости итерационной процедуры, по аналогии с изменением итерационной процедуры для энергосистемы PV-узел-ШБМ, при заданных начальных узловых мощностях внутри области существования режима, предлагается использовать следующее выражение:

$$
\begin{align*}
X_{n+1} &= X_n - \Delta X_{n+1}, \\
\text{если матрица } \mathbf{H} \text{ положительно определена;} \\
X_{n+1} &= X_n + \Delta X_{n+1}, \\
\text{если матрица } \mathbf{H} \text{ знаконепрерывная.}
\end{align*}
$$

Рис. 6. Области сходимости для энергосистемы PV-узел – ШБМ с запределенной величиной мощности генерации
Также для обеспечения сходимости предлагается использовать укорочение шага итерации: либо ограничить абсолютную величину шага, либо относительную (за базу принимая величину параметров режима на шаге i-1).

Рассмотренный выше подход исследован на примере трехузловой энергосистемы и был представлен в статье [18]. Тестирование производилось для схемы, представленной на рис. 7. Параметры схемы следующие: \(z_{12} = z_{13} = z_{23} = 5 + j20 \ \text{Ом} \), емкостная проводимость каждой линии 130 мкСм, напряжение генераторов и системы – 231 кВ. При этом мощность первого генератора в установившемся режиме равна 300 МВт, а второго – 600 МВт. Для трехузловой схемы целевая функция \(\Phi \) может быть записана в виде

\[
\Phi(\delta_1, \delta_2) = f_{\text{Gen}_1}(\delta_1, \delta_2) + f_{\text{Gen}_2}(\delta_1, \delta_2).
\]

(10)

Рис. 7. Трехузловая система

Соответствующий целевой функции (10) при заданном начальном режиме контурный график показан на рис. 8. На нем легко можно увидеть, что минимум целевой функции соответствует точке установившегося режима, седловые точки соответствуют ближайшим точкам на границе области существования режима (с разных ее сторон), а два локальных максимума – это две наиболее удаленные от установившегося режима точки на границе области существования режима.

Данные свойства (экстремумы) указывают на возможность применения целевой функции для нахождения ближайшего предельного режима для сложных энергосистем. Главная проблема при этом поиске заключается в том, чтобы обеспечить сходимость к седловой точке, а не к минимуму или максимуму. Описаны ранее модификации обобщенного метода Ньютона позволяют добиться достаточно надежной сходимости к искомому ближайшему предельному режиму (седловой точке).

На рис. 9 представлена область сходимости предлагаемого метода для трехузловой схемы. Любые начальные условия из нее будут приводить нас в седловую точку, которая соответствует ближайшему предельному режиму. Можно отметить, что область сходимости имеет достаточно большие размеры, охватывает заметную часть пространства углов. Другая важная деталь, которую нужно отметить: точка установившегося режима не входит в эту область. Однако даже небольшое смещение в сторону от этой точки обеспечивает надежную сходимость к точке ближайшего предельного режима, что подтверждает применимость разработанного подхода.

Рис. 8. Целевая функция для системы PV-узел-ШБ
ЗАКЛЮЧЕНИЕ

В статье описан подход к расчету близайшего предельного режима работы энергосистемы на основе поиска седловой точки функции, состоящей из суммы квадратов невязок уравнений установившегося режима. Анализируется область сходимости метода к предельному режиму при движении к пределу «изнутри» области существования решения. Исследования направлены на получение модели, которая позволит оптимизировать противоваварийное управление в электроэнергетике и более эффективно решать задачу мониторинга запасов устойчивости. Развитие описанного метода заключается в учете ограничений в форме равенств с помощью метода Лагранжа, а ограничений в форме неравенств с помощью метода Каруша-Куна-Таккера или метода штрафных функций.

Информация выполнена при финансовой поддержке РФФИ в рамках научного проекта № 16-38-00404 мол. а

Список литературы

Поступила в редакцию 25 декабря 2018 г.

INFORMATION IN ENGLISH

SEARCH OF A CLOSEST LIMIT LOAD OPERATION MODE OF A GRID ON THE BASIS OF GENERALISED NEWTON METHOD

Andrey V. Pazderin

D.Sc. (Engineering), Professor, Head of Automated Electrical Systems Department, Ural Federal University (URFU), Yekaterinburg, Russia. E-mail: a.v.pazderin@urfu.ru. ORCID: https://orcid.org/0000-0003-4826-2387.
The paper presents an alternative approach to voltage stability boundaries evaluation. Voltage stability boundaries evaluation is necessary for assessment of minimum security margin. Minimum security margin is a basic criterion applied by System Operators to provide corrective actions for maintaining power system security. The proposed method is direct but has advantages over conventional direct methods. It is based on optimization technique and makes it possible to evaluate the distance to power system voltage stability boundary. The described approach is based on the use of the Newton's method and sum of square roots of power flow equations. The paper demonstrates the concept of the approach based on simple power system models (PV-node – swing-bus, 2PV-node – swing-bus). The issue of the proposed method convergence is given special attention to in the article.

Keywords: power systems stability, stability criteria, voltage stability, stability margin, emergency control.

References

References

ТЕОРИЯ И ПРАКТИКА АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА

УДК 62-503.57-629.78 https://doi.org/10.18503/2311-8318-2019-1(42)-19-23

Богданов Д.Ю., Кравченко О.А.

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

РАЗРАБОТКА И РЕАЛИЗАЦИЯ АДАПТИВНОГО РЕГУЛЯТОРА ПЕРЕМЕЩЕНИЯ УСТРОЙСТВА ОБЕЗВЕШИВАНИЯ ПОЛЕЗНОГО ГРУЗА ТРЕНЖЕРА ДЛЯ ПОДГОТОВКИ КОСМНОВАТОВ

Обоснована необходимость реализации адаптивного управления системой обезвешивания специализированного тренажер-ного комплекса «Выход-2», предназначенного для подготовки космонавтов к работе в условиях невесомости и пониженной гравитации. Приведены теоретические зависимости параметров корректирующего устройства от длины сходящего каната и текущего режима гравитации. Описана аппаратная реализация системы управления горизонтальными перемещениями. Обозначены ключевые особенности отдельных узлов системы. Представлены результаты экспериментальных исследований работы созданной системы управления.

Ключевые слова: стены обезвешивания, тренажер, имитация невесомости, система управления, корректирующее устройство, адаптация.

ВВЕДЕНИЕ

Для современной пилотируемой космонавтики характерно повышенное требование к подготовке космонавтов. Важную роль в обучении космонавтов играют тренажерные комплексы позволяющие имитировать условия невесомости и пониженной гравитации на Земле [1, 2]. Одним из таких тренажеров является специализированный тренажер «Выход-2» [3, 4], в состав которого входит силокомпенсирующая система обезвешивания [5-8].

В 2018 году осуществлена глубокая модернизация системы обезвешивания тренажера «Выход-2», связанная в первую очередь с необходимостью увеличения скоростей перемещения с 0,2 до 2,0 м/с и ускорений с 0,2 до 1,6 м/с². На рис. 1 представлен внешний вид модернизированного тренажера «Выход-2». Данная модернизация потребовала замены пассивной системы горизонтальных перемещений на активную, с работой соответствующей системы управления. Как было показано в [9], параметры математической модели подобных систем не являются постоянными и изменяются в зависимости от массы обезвешиваемого объекта, имитируемой гравитации, рабочей длины каната и положения объекта в рабочем пространстве.

Исходя из требуемых технических характеристик тренажера масса обезвешиваемого объекта может варьироваться от 3 до 250 кг, а длина сходящего каната изменяется с 0,5 до 5,0 м, что вызывает существенное изменение параметров, поэтому система управления горизонтальными перемещениями должна иметь адаптивный характер.

РАСЧЕТ АДАПТИВНОГО КОРРЕКТИРУЮЩЕГО УСТРОЙСТВА

В [10] показано, что систему управления горизонтальными перемещениями для каждого направления можно реализовать в виде обобщенной структуры, приведенной на рис. 2.

На рис. 2 обозначено: МЧС – механическая часть системы; T_0, T_M – механические постоянные времени объекта и механизма; T_0, T_M – постоянные времени, характеризующие эквивалентную жёсткость и демпфирующие свойства объекта управления; $W_{\text{кр}}, W_{\text{см}}, W_{\text{мн}}$ – передаточные функции замкнутого контура тока, корректирующего устройства и датчика угла соответственно; M_R, M_Y, M_B – моменты двигателя, упругого взаимодействия и внешнего воздействия; Ω_0 – скорость объекта обезвешивания, приведенная к валу двигателя; α – угол отклонения каната от вертикали.

Рис. 1. Внешний вид модернизированного тренажера «Выход-2»

Рис. 2. Структурная схема системы управления горизонтальными перемещениями для одного из направлений

© Богданов Д.Ю., Кравченко О.А., 2019
Данная структурная схема представлена в относительных единицах, где за базовые величины приняты номинальный момент двигателя \(M_{\text{n}} \), скорость идеального холостого хода двигателя \(\Omega_0 \) и базовый угол отклонения \(\alpha_0 \), равный углу отклонения объекта при зафиксированных тележке и мосте при действии внешнего усилия эквивалентному \(M_{\text{n}} \):

\[
\alpha_0 = \frac{M_{\text{n}}}{\rho P_O},
\]

где \(\rho \) — радиус приведения; \(\mu \) — степень обезвешивания, \(P_O \) — вес объекта.

Согласно [5] передаточная функция корректирующего устройства должна иметь следующий вид:

\[
W_{kV}(s) = \frac{T_p s + 1}{T_s s + 1},
\]

где \(k_{kV} = (\frac{T_M}{T_D})k_{Kp} \) — коэффициент усиления корректирующего устройства; \(T_D = \sqrt{T_0 T_c / k_{Kp} \cdot T_{kV}^{1/4}} \) — постоянная времени форсирующей составляющей; \(T_k = T_p / k_{\alpha} \) — постоянная времени аперIODической составляющей; \(k_{Kp} \approx \delta_c \cdot k_{\alpha} \) — коэффициент усиления канала регулирования угла, определяемый требуемым статизмом по углу \(\delta_c \); \(k_{\alpha} \) — коэффициент, выбираемый в зависимости от оси быстродействия и помехозащищенности, рекомендуется \(k_{\alpha} = 4 \sim 8 \).

Данные выражения содержат переменные в относительных единицах, что неудобно при практической реализации регулятора. Кроме того, подобная запись не в полной мере раскрывает параметры регулятора от состояния системы. Поэтому целесообразно представить данные выражения в функции от абсолютных величин, воспользовавшись математическим описанием, полученным авторами в [9].

После преобразования зависимость постоянной времени форсирующей составляющей имеет вид

\[
T_D = \frac{L \delta_s}{k^{1/4}_{}},
\]

где \(L \) — длина сходящего каната.

При практической реализации корректирующего устройства целесообразно объединить операции усиления сигнала и нормирования угла, тогда коэффициент корректирующего устройства будет равен

\[
k_{kVabc} = \frac{k_{kV}}{\alpha_0} = \frac{\mu \cdot \frac{g_{\text{M}}}{\delta_j} \cdot \rho M_H}{},
\]

где \(g_{\text{M}} \) — момент инерции приводного механизма.

Как видно из (3), значение постоянной времени зависит от длины сходящегося каната и размера гравитации. Во время тренировки режим гравитации меняется редко и лежит в диапазоне от 0,62 для марсианской гравитации до 1,0 для полной невесомости. Длина каната в свою очередь изменяется постоянно при вертикальных движениях объекта и лежит в диапазоне от 0,5 до 5,0 м. Как видно из (4), коэффициент усиления зависит только от режима гравитации и не требует перерывной адаптации. Также можно сделать вывод об отсутствии необходимости адаптации корректирующего устройства горизонтальных перемещений от массы объекта обезвешивания.

На рис. 3 представлены частотные характеристики системы при различных ее состояниях.
При измерении угла отклонения важно минимизировать инерционность и трение в механизме датчика, он должен обладать достаточным разрешением на рабочем диапазоне ±2°, а его выходной сигнал должен быть нечувствительным к помехам. Поэтому в качестве чувствительного элемента датчика отклонения каната выбран фотоэлектрический инкрементальный датчик ЛИР238А с разрешением 720 000 дискрет на оборот и TTL выходным сигналом.

Необходимость адаптации параметров корректирующего устройства оказывает его реализацию в модуле управления CU320-2 PN, поэтому целесообразно все вычислительные операции, связанные с объединением сигналов с датчиков угла, расчетом параметров корректирующего устройства и его работой, осуществлять в ПЛК. При этом цикл обмена между модулем управления и ПЛК, а также цикл обработки алгоритмов должен быть достаточно коротким. В рассматриваемом случае он составил 1 мс.

Одним из важных элементов системы является приводной электродвигатель. Для обеспечения высокого качества регулирования и хороших энергетических показателей его инерционность должна быть минимальной. Кроме того, из-за особенности эксплуатации трехмерных комплексов для подготовки космонавтов используемый электродвигатель должен выдерживать длительную работу на малых скоростях < 0,1Ω). Поэтому в качестве привода выбран синхронный электродвигатель с постоянными магнитами SIMOTICS S-1FK7 Comapt.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Для подтверждения эффективности адаптивного корректирующего устройства осуществлен следующий эксперимент. При разомкнутом контуре регулирования угла груза раскачивался до заданной амплитуды, после чего в момент покоя груза, соответствующий максимальному отклонению каната, контур регулирования замыкался. Полученные осциллограммы работы системы управления с и без адаптации приведены на рис. 5.

![Diagrams](Image)

Рис. 4. Структура аппаратной реализации системы управления горизонтальными перемещениями

Рис. 5. Осциллограммы угла отклонения каната и частоты вращения двигателя: 1 – без адаптации; 2 – с адаптацией

Из рис. 5 видно, что в случае отсутствия адаптации график изменения угла отклонения каната затухает быстрее, однако при этом груз успевает развить значительную скорость в направлении противоположном отклонению каната. В случае адаптивного корректирующего устройства затухание колебаний осуществляется медленнее, но при этом объект (груз) остается в исходной точке в состоянии покоя. Таким образом, за счет адаптации можно достичь лучшего качества имитации условий невесомости.

ЗАКЛЮЧЕНИЕ

В результате выполненных исследований можно сформулировать следующие выводы:

1. Изменение параметров математической модели, связанные с изменением длины сходящего каната в 10 раз и степени обезвешивания в 2 раза, требуют реализации адаптивного управления горизонтальными перемещениями.

2. При адаптации параметров корректирующего устройства необходимо использовать приведенные аналитические зависимости.
Development and realization of adaptive controller of real weight unloading motion device of simulator for cosmonauts training

Dmitriy Yu. Bogdanov
Assistant, the department of Energy supply and electric drive, Platov South-Russian State Polytechnic University, Novocherkassk, Russia. E-mail: bogdanov_dmitr@mail.ru. ORCID: https://orcid.org/0000-0002-7851-6045.

Oleg A. Kravchenko
D.Sc. (Engineering), Associate Professor, Head of the department of Energy supply and electric drive, Platov South-Russian State Polytechnic University, Novocherkassk, Russia. E-mail: mvk346428@gmail.com. ORCID: https://orcid.org/0000-0002-2974-448X.

The realization relevance of the unloading system with adaptive control of specialized training complex “Vyhod-2” for training of cosmonauts to work in zero gravity and low gravity is justified. The theoretical restrictions of the correcting device parameters on convergent rope length and current gravity mode are given. The hardware implementation of the horizontal movement control system is described. The key points of the separate unit of the system are presented. The experimental research results of the designated control system are presented.

Keywords: unloading test bench, simulators, weightlessness imitation, control system, correcting device, adaptive.

REFERENCES

Поступила в редакцию 26 декабря 2018 г.

СИСТЕМА ПЛАВНОГО ПУСКА АСИНХРОННОГО ДВИГАТЕЛЯ С ФАЗНЫМ РОТОРОМ

В электроприводе, выполненном на базе асинхронного двигателя с фазным ротором, предложено регулировать ток ротора с помощью выпрямительно-инверторного блока, при этом вход выпрямителя подключен к выводам обмотки ротора двигателя, а выход инвертора, выполненного на базе IGBT-транзисторов с обратными диодами, – к частотно-зависимому индуктивно-активному сопротивлению, в звено постоянного тока включен емкостный фильтр. В системе электропривода реализован плавный пуск асинхронного двигателя с фазным ротором с возможностью регулирования и поддержания постоянства пускового момента с обеспечением требуемого ускорения. Такую систему электропривода предложено использовать на конвейерах металлургических производств, зачастую не требующих регулирования скорости, но обеспечивающих пусковые режимы с заданным темпом разгона, в том числе и при полной загрузке конвейера. Система электропривода сочетает некоторые свойства асинхронного вентильного каскада и систем паратормозно-регуляторного управления. Описана работа системы управления инвертором, реализующая стабилизацию тока ротора асинхронного электродвигателя за счет изменения частоты на выходе инвертора напряжения в функции вычисленного тока ротора двигателя. Частотно-зависимое индуктивно-активное сопротивление, называемое индукционным сопротивлением, содержит массивный магнитопровод с тремя трубчатыми стержнями, соединенными ярмом, на каждом из стержней размещена однолитная фазная обмотка. Толщина стенок трубчатых стержней не превышает глубины проникновения электромагнитного поля в массивный ферромагнитный материал. Приведены результаты экспериментальных исследований частотных характеристик индукционного сопротивления. Разработана математическая модель системы электропривода, проведено компьютерное моделирование динамических процессов с использованием пакета прикладных программ MATLAB Simulink. Доказана возможность реализации предложенного способа управления процессом пуска асинхронного двигателя со стабилизацией пускового момента.

Ключевые слова: асинхронный двигатель с фазным ротором, пусковой момент, выпрямитель, инвертор, фильтр, индукционное сопротивление.

ВВЕДЕНИЕ

На конвейерах металлургических производств, в том числе и на механизмах, не требующих регулирования скорости, достаточно широко применяются системы электропривода на базе асинхронного двигателя с фазным ротором (АДФР). Это объясняется тяжелыми условиями пуска, поскольку электропривод должен обеспечить пуск нагруженного конвейера. Известные системы параметрического резисторного и импульсно-резисторного пуска АДФР обеспечивают ограничение пускового тока за счет рассеивания энергии скольжения на резисторных элементах, что определяет низкую энергоэффективность данных пусковых устройств [1–3].

Наиболее экономичный способ ограничения тока ротора в АДФР, основанный на введении противоЭДС в цепь ротора, реализуется в системе асинхронного вентильного каскада (АВК), имеющего выпрямительно-инверторный блок, передающий энергию скольжения через согласующий трансформатор в трехфазную питающую сеть. Однако этот хороший изученный способ управления АДФР обеспечивает приемлемые технико-экономические показатели электропривода только при небольшом (20–25%) диапазоне изменения скорости и не в состоянии обеспечить необходимые пусковые характеристики [4, 5]. Системы АВК с последовательным возбуждением не обеспечивают требуемую для механизмов конвейерного типа повышенную переуправляемость [6–8].

В разработанной системе электропривода предложено ограничивать ток ротора, используя выпрямительно-инверторный блок, содержащий конденсаторный фильтр в звено постоянного тока, полностью управляемый инвертор на базе IGBT-транзисторов с обратными диодами, к выходу которого подключен частотно-зависимое индукционное сопротивление [9].

МЕТОДЫ РЕШЕНИЯ

Рис. 1. Силовая часть электропривода
Представленный на рис. 2 блок управления частотой выходного тока инвертора выполнен следующим образом: он содержит формирователь сигналов (Ф), имеющий количество выходных каналов, соответствующее количеству ключевых элементов инвертора, вход формирователя сигналов соединен с управляющим входом инвертора, вход формирователя сигналов соединен с выходом регулятора частоты (РЧ) переменного тока на выходе инвертора, вход которого соединен с выходом первого узла сравнения 1, положительный вход которого соединен с блоком задания максимальной частоты (БЗМЧ), а отрицательный вход первого узла сравнения 1 соединен с выходом блока ограничения (БО), вход которого соединен с выходом интегрального блока регулятора тока (И), вход которого соединен с выходом второго узла сравнения 2, положительный вход которого соединен с блоком задания выпрямленного тока (БЗТ), а отрицательный вход второго узла сравнения 2 соединен с выходом датчика тока.

Работа рассмотренных системы управления АДФР была исследована с помощью компьютерного математического моделирования в программном пакете Matlab Simulink [10]. Электропривод работает следующим образом.

При подаче напряжения на обмотку статора в обмотке ротора наводится ЭДС, выпрямленное напряжение ротора поступает на вход инвертора (рис. 3) и определяется выражением [11]:

$$E_{dp} = \frac{3}{\pi} \sqrt{6} E_{2x} s - \frac{3}{\pi} z_s I_d,$$

где E_{2x} – ЭДС роторной цепи АДФР; s – скольжение; z_s – полное сопротивление роторной цепи; I_d – ток, протекающий в звене постоянного тока.

Система управления инвертором вырабатывает сигнал задания максимальной частоты, который сравнивается с сигналом, поступающим от интегрального блока (регулятора тока). Регулирующий сигнал задания на частоту выходного тока обеспечивает максимальную частоту тока на выходе открывшегося инвертора, при этом полное комплексное сопротивление индукционного резистора будет максимальным, согласно [12–14]:

$$Z_M = Z_i \left(\frac{uw^2}{l_s} \right) e^{j\phi},$$

где Z_i – модуль полного электрического сопротивления единичного квадрата поверхности магнитопровода; u – периметр стержня; w – число витков; l_s – эквивалентная длина фазного магнитопровода.

$$Z_i = \sqrt{\frac{\mu_0}{\gamma}},$$

где μ_0 – магнитная проницаемость на поверхности магнитопровода; γ – удельная электрическая проводимость материала.

Активная и индуктивная составляющие определяются с помощью соотношений [15–17]:

$$r_m = 0.86Z_m;$$

$$x_m = 0.53Z_m.$$

После открытия инвертора, по цепи, состоящей из обмотки ротора, нерегулируемого выпрямителя, датчика тока, регулируемого инвертора, индукционного резистора, начинает протекать ток. Одновременно происходит заряд фильтрующего конденсатора в звезде постоянного тока. На рис. 4 показана зависимость изменения полного комплексного сопротивления ИР от частоты выходного тока инвертора.
Ток в выпрямленной цепи можно рассчитать по формуле

\[
I_d = \frac{E_{dc} - E_{av} - \Delta U_{мк}}{R_{вк}},
\]

где \(E_{dc}\) – противоставление ЭДС инвертора; \(E_{av}\) – амплитудное падение напряжения; \(\Delta U_{мк}\) – суммарное падение напряжения на вентилях; \(R_{вк}\) – суммарное сопротивление, приведенное к цепи постоянного тока [18],

\[
R_{вк} = r_0^* + x_p^* + x_{вк}^* + \frac{x_u^* + r_p^*}{\pi};
\]

\[
r_0^* = 2r_p^*;
\]

\[
x_p^* = \frac{3x_p^*}{\pi};
\]

\[
x_{вк}^* = \frac{3x_{вк}^* (f/f_0)}{\pi};
\]

\[
x_u^* = \frac{3x_u^* f/f_0}{\pi};
\]

\[
r_p^* = \frac{x_p^* f}{f_0};
\]

где \(r_p^*\) – приведенное активное сопротивление ротора; \(x_p^*\) – приведенное реактивное сопротивление ротора; \(x_{вк}^*\) – приведенное индуктивное сопротивление обмотки индукционного реактора; \(x_u^*\) – приведенное индуктивное сопротивление магнитопровода индукционного реактора; \(r_0^*\) – приведенное активное сопротивление магнитопровода индукционного реактора; \(f\) – частота на выходе инвертора; \(f_0\) – максимальная частота на выходе инвертора.

ПротивоЭДС инвертора, в первом приближении, численно равно напряжению на индукционном сопротивлении:

\[
E_{av} = Z_{вк} \cdot k_{вк} \cdot I_d,
\]

где \(Z_{вк}\) – полное комплексное сопротивление ИР; \(k_{вк}\) – коэффициент приведения напряжения мостовой схемы к цепи постоянного тока.

При прохождении тока в выпрямленной цепи через датчик тока, сигнал \(U_{off}\) с датчика тока поступает на интеграторный вход второго узла сравнения 2, а от входа задания выпрямленного тока поступает сигнал \(U_T\) на положительный вход узла сравнения 2. Сигнал рассогласования \(\Delta U_T = U_T - U_{off}\) поступает на вход интеграторного блока, который вырабатывает сигнал желаемого изменения частоты \(U_{up}\), это сигнал ограничивается блоком ограничения.

При изменении скорости асинхронного двигателя в процессе пуска на первом узле сравнения 1 происходит сигнал задания максимальной частоты \(U_{max}\) и сигнала желаемого изменения частоты \(U_{up}\), определяется рассогласование \(\Delta U_T = U_{max} - U_{up}\). Блок ограничения сигнала \(U_{up}\) настраивается так, чтобы сигнал \(\Delta U_T\) на входе блока регулятора частоты был всегда положительным. На \textbf{Рис. 5} показана зависимость тока в выпрямленной цепи от скольжения ротора АДФР, из которой видно, что система управления инвертором обеспечивает его поддержание на заданном уровне.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Рис. 5. Зависимость тока в выпрямленной цепи от скольжения}
\end{figure}

По мере разгона асинхронного двигателя происходит уменьшение ЭДС ротора, поэтому для поддержания постоянства тока ротора необходимо уменьшать вводимую противоставление ЭДС инвертора. Это достигается путем уменьшения частоты тока на выходе инвертора, вследствие чего уменьшается сопротивление магнитной системы индукционного резистора [12-17], влияющее на регулирующий ток в цепи ротора. После достижения двигателем скорости, близкой к скорости на естественной механической характеристике, частота тока на выходе инвертора устанавливается минимальной или равной нулю, для этого открывают только два ключевых вентилей – один в анодной, другой в катодной, группах вентилей инвертора, и по двум фазным обмоткам индукционного реактора будет протекать постоянный ток. В этом случае добавочное сопротивление, введенное в цепь ротора асинхронного двигателя, будет минимальным. Необходимый темп уменьшения частоты на выходе инвертора в процессе пуска задают исходя из желаемого темпа разгона электропривода путем соответствующей настройки постоянной времени интегрального блока. Для получения пониженной скорости вращения асинхронного двигателя необходимо устанавливать соответствующую частоту тока на выходе инвертора. На \textbf{Рис. 6} показано изменение выходной частоты инвертора в зависимости от скольжения ротора асинхронного электродвигателя.

Была построена динамическая механическая характеристика (\textbf{Рис. 7}), отображающая зависимость момента на валу электродвигателя от его скорости. Пуск электродвигателя производился под нагрузкой \((M_{max} = M_{наг})\). Видно, что разгон электродвигателя происходит при постоянном значении пускового момента.
Рис. 6. Зависимость частоты выходного тока инвертора от скольжения

Рис. 7. Динамическая механическая характеристика

Рис. 8. Экспериментальные частотные зависимости индукционного резистора

ЗАКЛЮЧЕНИЕ

Преимущества предлагаемого способа управления асинхронным двигателем с фазным ротором заключаются в простоте реализации, т.к. регулируется только одна переменная – частота тока на выходе инвертора.

При построении замкнутого контура регулирования тока в выпрямленной цепи обеспечивается постоянство тока ротора и момента при пуске асинхронного двигателя.

В электроприводе возможно построение двухконтурной системы управления с внешним контуром регулирования скорости двигателя, что позволит получить более качественные динамические характеристики.

СТАТЬЯ НАПИСАНА ПРИ ПОДДЕРЖКЕ ГРАНТА РФФИ № 17-48-480492. АНАЛИЗ, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ УПРАВЛЕНИЯ ЭЛЕКТРОМЕХАНИЧЕСКИМИ СИСТЕМАМИ С ЭЛЕКТРОПРИВОДАМИ ПЕРЕМЕННОГО ТОКА МЕХАТРОННЫХ УСТРОЙСТВ, МАНИПУЛЯТОРОВ И ГУЗОПОДЪЕМНЫХ МЕХАНИЗМОВ.

СПИСОК ЛITERАТУРЫ

SYSTEM OF SOFT START FOR INDUCTION MOTOR WITH PHASE ROTOR

Victor N. Meshcheryakov
D.Sc. (Engineering), Professor, Head of the Department of Electric Drive, Faculty of Automation and Computer Science, Lipetsk State Technical University, Lipetsk, Russia. E-mail: mesherek@stu.lipetsk.ru. ORCID: https://orcid.org/0000-0003-0984-5133.

Andrey I. Boikov
Assistant, Department of Electric Drive, Faculty of Automation and Computer Science, Lipetsk State Technical University, Lipetsk, Russia. E-mail: aboikov2013@gmail.com. ORCID: https://orcid.org/0000-0002-0032-0683.

Denis V. Lastochkin
Postgraduate Student, Department of Electric Drive, Faculty of Automation and Computer Science, Lipetsk State Technical University, Lipetsk, Russia. E-mail: kaf-ep@stu.lipetsk.ru.

In the electric drive designed on the basis of an asynchronous motor with a phase rotor it is proposed to regulate the rotor current using the rectifier-inverter unit. The input of the rectifier is connected to the terminals of the rotor winding of the motor and the output of the inverter performed on the basis of IGBT-transistors with reverse diodes is connected to the frequency-dependent inductive-active resistance. A capacitive filter is included in the DC link. In the electric drive system, the installed soft-start of the asynchronous motor with a phase rotor is implemented with the possibility of regulating and maintaining the constancy of the starting torque to ensure the required acceleration. It is proposed to use such an electric drive system on conveyor systems of metallurgical production, which often do not require speed control, but providing starting modes with a predetermined rate of acceleration including when the conveyor is fully loaded. The electric drive system combines some properties of asynchronous valve cascade and parametric control systems. The operation of the inverter control system is described, it implements stabilization of the rotor current of an induction motor by changing the frequency at the output of the voltage inverter as a function of the rectified current of the motor rotor. Frequency-dependent inductive-active resistance, referred to as induction resistance, contains a massive magnetic core with three tubular rods connected by a yoke and each rod has a single-layer phase winding. The wall thickness of the tubular rods does not exceed the depth of penetration of the electromagnetic field into the massive ferromagnetic material. The results of experimental studies of the frequency characteristics of the induction resistance are presented. The mathematical model of the electric drive system is developed, computer simulation of dynamic processes is carried out using the MATLAB Simulink application software package. The possibility of implementing the proposed method of controlling the process of starting an induction motor with the stabilization of the starting torque has been proven.

Keywords: induction motor with phase rotor, starting torque, rectifier, inverter, filter, induction resistance.

REFERENCES
2. Jiang You, Minghao Liu, Jiurui Ma, Hongjie Jia Modeling and Analyse of Induction Motor Drive System with Consideration of DC Bus Stabilization and Control Performance. 8th Inter-national Power Electronics and Motion Control
7. Meshherjakov V.N., Fedorov V.V. Asynchronously-valve cascade with the inverter in the stator circuit and a common DC link. Elektroteknika [Electrical engineering], 1998, no. 6, pp. 47–50. (In Russian)

ОЦЕНКА МОЩНОСТИ ВИБРАЦИИ В ЭЛЕКТРОПРИВОДЕ

В настоящей статье исследуются потоки механической мощности в электроприводе, подверженном виброустойчивым. В работе рассмотрены две модели электропривода, установленного на жестком основании непосредственно и на виброзолото-ках. Передача механической энергии в таких системах сопровождается возникновением вибрационных процессов механической и электромагнитной природы. Вязкоупругие элементы создают компенсационные силы, препятствующие отклонению системы от положения равновесия и существенно ослабляющие высокочастотные вибрации. Исследования проведены методами имитационного динамического моделирования и частотного анализа. В процессе моделирования получены значения линейных перемещений центра масс уравновешенного ротора и радиальных составляющих сил, действующих на подшипники двигателя. При этом действие инерционной силы на электропривод, установленный на жестком основании, примерно в 1,5 раза больше, чем действие этой силы на систему, оснащенную магнитореологическими виброзолотами. Оценка потоков механической мощности выполнена по спектру инерционной силы, действующей на подшипники. По полученным спектрам видно, что многие арко выражены характерами дисперсных и упреждённых, создаваемых магнитореологическими виброзолотами. Сравнив спектрограммы двух динамических систем электропривода, показано, что системы, оснащенные активными виброзолотами, поглощают до 50% пульсационной механической энергии вибросцеплений электропривода, изымаемой из мощности линейных виброперемещений.

Ключевые слова: электропривод, вибрация, демпфирование, потоки механической мощности, математическое моделирование, динамическая модель электропривода, вибродинамика, вязкоупругое основание.

ВВЕДЕНИЕ

Данная работа посвящена вопросу определения потоков механической мощности в приводном электромеханическом комплексе как на частоте вращения, так и на других гармониках, вызванных виброустойчивыми.

Механические параэтные потоки мощности вибросцеплений в приводе машин [1,2] могут возникать из-за несовершенства конструкции, модуляции момента на валопроводе переменной нагрузкой рабочей машины. Наиболее распространенные конструктивные дефекты в электроприводе обусловлены такими факторами, как статический и динамический эксцентриситет валов ротора, износ и люфты подшипников, расщепление пакетов активной стали статора [3-5]. Пульсации механической природы, главным образом, лежат в диапазоне от 0,1 до 100 Гц.

Роторы электродвигателей переменного тока при вращении испытывают пульсацию крутящего момента, которые создаются зубцами гармониками, периодическими электромагнитными силами, вызванными магнитным насыщением зубовой зоны ротора, несинусоидальными искажениями токов питающей сети или на выходе преобразователя частоты. Наиболее выраженные пульсации момента электромагнитной природы лежат в диапазоне от 10 Гц до 10 кГц [3,6]. Спектрограммы некоторых типовых групп двигателей приведены на рис. 1.

На рис. 1 кривая 1 соответствует группой электрическим двигателям (1000 об/мин), кривая 2 – электрическим машинам средней и малой мощности (1500 об/мин), кривая 3 – электрическим машинам средней и малой мощности (3000 об/мин), кривая 4 – крупным турбогенераторам (3000 об/мин), кривая 5 – высокочастотным индуктивным генераторам (3000 об/мин).

© Ермолаев А.И., Плехов А.С., Титов Д.Ю., Чернов Е.А., 2019
Все прочие потоки механической мощности в электроприводе создают дополнительную нагрузку на его элементы. С одной стороны, эту нагрузку необходимо оценить при проектировании электротехнического комплекса для обеспечения его надежной работы. С другой стороны, посредством использования известных виброрегуляторов целесообразно снизить интенсивность реактивных потоков мощности в приводном электромеханическом комплексе.

ОЦЕНКА ПОТОКОВ МЕХАНИЧЕСКОЙ МОЩНОСТИ ЭЛЕКТРОПРИВОДА

Физическая модель электропривода, расположенного на неподвижном основании, представлена на рис. 2.

В общем случае система электропривода силового агрегата представляет собой механически соединенные электродвигатель, валопровод и исполнительный механизм (например, насос или компрессор).

Если сумма проекций на оси координат сил и моментов, действующих в электроприводе в каждый момент времени равна нулю, то такой привод считается уравновешенным (рис. 2). Динамическое равновесие ротора, вращающегося вокруг своей оси, определяется системой уравнений:

\[
\begin{align*}
F &= \sum_{i=1}^{n} F_i = \sum_{i=1}^{n} m_i \frac{d^2 y_i}{dt^2} = 0; \\
M &= \sum_{i=1}^{n} M_i = \sum_{i=1}^{n} J_i \frac{d^2 \varphi_i}{dt^2} = \sum_{i=1}^{n} m_i r_i \frac{d^2 \varphi_i}{dt^2} = 0,
\end{align*}
\]

где \(F \) — совокупная сила, действующая на ротор; \(F_i \) — i-я составляющая совокупной силы, действующей на ротор; \(m_i \) — масса i-го элемента ротора; \(y_i \) — перемещение центра масс элемента ротора относительно положения равновесия; \(M \) — совокупный момент сил ротора; \(M_i \) — составляющая момента силы, действующей на ротор; \(J_i \) — момент инерции i-го элемента ротора; \(\varphi \) — угловое перемещение ротора; \(r_i \) — расстояние от центра масс элемента до оси вращения ротора.

В зависимости от нагрузок и пусковых нагрузок, сил трения при вращении и пульсаций питающего напряжения привод к нарушению устойчивости системы (1). В общем случае неуравновешенный ротор двигателя генерирует под действием центробежных сил вынуждающую силу, действующую на основание, и пульсирующий момент:

\[
\begin{align*}
F &= F_i \sin(\omega t + \varphi) \neq 0; \\
M &= M_i \sin(\omega t + \varphi) \neq 0.
\end{align*}
\]

В системе (2) первое выражение характеризует статический дебаланс ротора, а второе — его динамический дебаланс. На рис. 3 представлена физическая модель электропривода с неуравновешенным ротором с обозначением действующих сил и моментов.
На рис. 3 показаны следующие силы и моменты: \(F_{me} \) – инерционная сила центра масс ротора, связанно го с приводом; \(F_{mc} \) – колебания инерционной силы, связанные с эксцентриситетом вала ротора; \(F_{e} \) – инерционная сила, действующая на ротор с валопроводом; \(M_{e} \) – момент сопротивления валопровода и нагрузки; \(M_{r} \) – кривой момент двигателя; \(M_{m} \) – сила трения, возникающего при вращении; \(M_{mr}, M_{gr} \) – колебания мо мента, связанные с эксцентриситетом вала (инерцион ная и гравитационная составляющая).

При составлении системы дифференциальных уравнений для модели, приведенной на рис. 3, введены обобщенные координаты: угол поворота ротора \(\varphi \) и вертикальные перемещение центра масс ротора \(y \) [13]. По теореме о движении центров масс дифференциальные уравнения сил, действующих на ротор, можно представить следующим образом:

\[
\begin{align*}
(m + m_c) \frac{dV_r}{dt} &= (m + m_e) g; \\
J \frac{d^2 \varphi}{dt^2} &= M_e - m_c r \frac{d^2 y}{dt^2} \sin \varphi - m_r g \sin \varphi,
\end{align*}
\]
где \(m \) – масса платформы с электроприводом; \(m_e \) – масса ротора; \(V_r \) – линейная скорость центра масс ротора; \(g \) – ускорение свободного падения; \(J \) – момент инерции ротора; \(M_e \) – момент, создаваемый статорной обмот кой; \(r \) – радиус эксцентриситета вала ротора (расстояние от центра масс до оси вращения).

Член \(V_r / dt \) в системе (3) представляет собой сумму ускорения центра масс и гармонических колебательных движений на некоторой частоте вибросмещения. Главный вектор сил инерции при этом представляет собой сумму касательной и нормальной составляющих и находится по формуле [14]

\[F_e = m_e \frac{dV_r}{dt} = m_e a^t \sin \varphi + m_e a^n \cos \varphi, \]
где \(F_e \) – проекция инерционной сили, вызванной вращением неуравновешенного ротора; \(a^t \) и \(a^n \) – соответственно тангентиальное и центроцентрическое ускорение центра масс неуравновешенного ротора. Как известно из [14], эти ускорения находятся по формулам:

\[
\begin{align*}
a^t &= \frac{d^2 \varphi}{dt^2} r; \\
a^n &= \left(\frac{d \varphi}{dt} \right)^2 r.
\end{align*}
\]

Подставляя (4) и (5) в (3), уравнение движения ротора двигателя (см. рис. 3) могут быть записаны в следующем виде:

\[
\begin{align*}
m_e \frac{d^2 y}{dt^2} &= -m_c r \frac{d^2 \varphi}{dt^2} \sin \varphi + \left(\frac{d \varphi}{dt} \right)^2 \cos \varphi = m_n g; \\
J \frac{d^2 \varphi}{dt^2} &= M_e - m_c r \frac{d^2 y}{dt^2} \sin \varphi - m_r g \sin \varphi,
\end{align*}
\]
где \(m_n = m + m_e \).

На рис. 4 представлена физическая модель электропривода на вязкоупругом основании. На рис. 4 показаны следующие проекции сил во фронтальной и горизонтальной плоскостях: \(F_w \) – инерционная сила, действующая на платформу с установленным приводом; \(F_p, F_c \) – демпфирующая и упругая сила, возникающая в вязкоупругом основании при колебаниях системы; \(F_e \) – инерционная сила, действующая на платформу с приводом; \(F_{nc}, F_{mc}, F_{nm} \) – проекция сил инерции платформы, эксцентриситета и ротора соответственно на горизонтальную плоскость (направление их действия показано соответствующим символом).

Вязкоупругие элементы (рис. 4) создают компенсационные силы, препятствующие отклонению системы от положения равновесия и существенно ослабляющие высокочастотные вибрации. В качестве таковых могут быть использованы и виброизоляторы, преобразующие энергию колебаний в тепло и смягчающие действие вибраций за счет сил упругости. В качестве универсального виброизоляционного элемента могут быть использованы активные магниторелаксационные демпферы, управляемые магнитным полем. Для вязкоупругого основания определены приведенный коэффициент жесткости \(C \) и коэффициент демпфирования \(\mu \) [15, 16]. На основании второго закона Ньютона можно записать:

\[
\begin{align*}
m_e \frac{d^2 y}{dt^2} - m_c r \frac{d^2 \varphi}{dt^2} \sin \varphi + \left(\frac{d \varphi}{dt} \right)^2 \cos \varphi &= -\mu \frac{dy}{dt} - Cy + m_n g; \\
m_e \frac{d^2 z}{dt^2} - m_c r \frac{d^2 \varphi}{dt^2} \cos \varphi - \left(\frac{d \varphi}{dt} \right)^2 \sin \varphi &= -\mu \frac{dz}{dt} - Cz; \\
J \frac{d^2 \varphi}{dt^2} &= M_e - \mu \frac{d \varphi}{dt} - m_c r \frac{d^2 y}{dt^2} \sin \varphi - m_r g \sin \varphi,
\end{align*}
\]
где \(\mu_{pol} \) – коэффициент вязкого трения в подшипниках; \(y, z \) – соответственно вертикальные и горизонтальные линейные перемещения центра масс ротора относительно жесткого основания.

Система уравнений (7) описывает периодические изменения сил и моментов относительно положений равновесия колебательной системы (см. рис. 4).
Теория и практика автоматизированного электропривода

Рис. 4. Физическая модель электропривода, расположенного на взаимоугловом основании

Первое уравнение представляет собой закон движения валопровода относительно неподвижной системы отсчета вдоль вертикальной оси. Второе выражение описывает закон движения неуравновешенного валопровода в направлении, перпендикулярном фронтальной плоскости. Третье выражение представляет собой закон вращательного движения неуравновешенного валопровода вокруг оси вращения х.

Мощность движения ротора распределяется на потоки полезной мощности P_{rot}, пульсационной мощности Q_{des} и мощность линейных возмущений Q_{lin}. Если в механическую систему электропривода включить взаимоугловое основание, тогда в уравнении мощности появляется дополнительная компонента Q_{smo}, характеризующая рассеяние энергии колебаний в магнитореологических виброгасителях:

$$\Sigma S = P_{rot} + Q_{des} + Q_{lin} + Q_{smo}. \quad (8)$$

Возникновение дополнительных слагаемых в выражении (8) обозначает уменьшение неактивных составляющих мощности благодаря тому, что энергия, поглощаемая виброгасителями, отнимается из энергии вынужденных колебаний неуравновешенного ротора.

Моделирование виброакустической системы

Имитационное моделирование механических колебательных процессов в системе электропривода выполняется с целью проведения оценки изменения величин составляющих потоков механической мощности в зависимости от изменения коэффициентов демпфирования и жесткости опор, а также определения возникающих при этом усилий.

В качестве среды моделирования динамических процессов в неуравновешенном приводе была выбрана опция SimMechanics, входящая в пакет Matlab. Программа предназначена для исследования законов движения в механических системах и возникающих силовых воздействий между ее элементами. Модель, разработанная в этой среде, представляет собой совокупность тел, взаимодействующих между собой через сходительные связи (степени свободы, взаимоугловые элементы, жесткие соединения и т.д.). Входными и выходными данными для модели являются силы и перемещения, снимаемые с определенных звеньев модели. Важным достоинством модели SimMechanics является возможность интеграции в нее общих блоков Simulink и возможность работы со стандартными средствами Matlab.

На основании системы уравнений (7) для физической модели системы электропривода, расположенного на взаимоугловом основании (см. рис. 4), была построена имитационная модель, представленная на рис. 5.

Данная модель учитывает потоки механической мощности как от выбирирующей платформы, так и от барабана, что позволяет контролировать и оценивать параметры работы системы в целом.

Рис. 5. Программная модель динамической системы электропривода, расположенного на взаимоугловом основании

ЭСиК. №1(42). 2019
Теория и практика автоматизированного электропривода

Поскольку реальные твердотельные конструкции всегда обладают упругими и диссипативными свойствами, физическая модель электропривода, размещенного на жестком основании (см. рис. 3), также может быть описана системой уравнений (7). При этом параметры C и μ будут представлять собой приведенные коэффициенты жесткости C_0 и демпфирования μ_0 упругой системы электропривода, учитывающие взаимодействие контактируемых элементов при- водного комплекса. Таким образом, для сравнения динамических свойств первой (на жестком основании) и второй (на взаимодействующих основаниях) физических моделей для общей программной модели были выбраны разные исходные данные: для модели №1 (жесткое основание) $C_0 = 10^4$ Н/мм, $\mu_0 = 1$ Н·с/м, а для модели №2 (с использованием вибросиляторов) $C_0 = 100$ Н/мм, $\mu_0 = 10$ Н·с/м.

В табл. 1 занесены общие для обеих моделей исходные данные.

Таблица 1

<table>
<thead>
<tr>
<th>Физическая величина</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Масса электропривода на платформе m, кг</td>
<td>200</td>
</tr>
<tr>
<td>Масса валопровода m_a, кг</td>
<td>70</td>
</tr>
<tr>
<td>Круглый момент двигателя M, Н·м</td>
<td>4000</td>
</tr>
<tr>
<td>Частота вращения вала n, об/мин</td>
<td>1500</td>
</tr>
<tr>
<td>Момент инерции дебаланса вала J, кг·м2</td>
<td>22.6·10$^{-3}$</td>
</tr>
<tr>
<td>Длина несбалансированного участка l, м</td>
<td>0.6</td>
</tr>
<tr>
<td>Радиальный изгиб вала Δ, мм</td>
<td>4.7</td>
</tr>
<tr>
<td>Тензор инерции вала, кг·м2</td>
<td>9</td>
</tr>
</tbody>
</table>

Рис. 6. Блок варирования коэффициентов жесткости C и вязкости μ магнитореологического вибросилятора

Обработка и исследование результатов моделирования динамической системы неуравновешенного электропривода

В процессе моделирования были получены диаграммы виброспосредственной неуравновешенного ротора относительно неподвижного основания и линейных силах, действующих на подшипники двигателя.

Получен спектр инерционной силы, действующей на подшипники. Из сравнения спектрограмм, изображенных на рис. 7 и 8, очевидно, что многие ярко выраженные субгармоники были подавлены действием диссипативных и упругих сил, создаваемых магнитореологическими демпферами.

При этом устранение инерционной силы на элементы электропривода, установленного на жестком основании, примерно в 1.5 раза больше, чем действие этой силы на систему, оснащенную магнито-реологическими вибросиляторами.

Оценка потоков механической мощности может быть выполнена с использованием формулы (8). Для этого нужно получить сигнал вибороприменений электропривода по отношению к неподвижному основанию, на котором расположена динамическая система. Этот сигнал может быть представлен в виде временной диаграммы. Диаграммы вибороприменений неуравноженного вала ротора в радиальном (вертикальном) направлении, полученные в ходе программного моделирования, приведены на рис. 9 и 10.

Уровни колебаний силы и момента на валу ротора были измерены посредством виброизмерительной аппаратуры («МС-201», «Октава», «Вибра») и представлены в виде диаграммы вибросигнала. Для представления этого сигнала в спектральной форме можно применить один из способов Фурье-преобразования. Поскольку вибрация носит характер вынужденных колебаний, следовательно, зная амплитуду каждой i-й гармоники вибросигнала, можно численно определить ее мощность:

$$
P_i = \frac{1}{2} A_i^2 \mu f_i^2,
$$

где f_i — частота исследуемой гармоники; μ — коэффициент демпфирования в подшипниках; A_i — амплитуда исследуемой гармоники.

Суммируя мощности наиболее выраженных гармоник, можно численно определить значения каждой составляющей потока механической мощности:

$$
P = \sum_{i=1}^{n} P_i, \quad (11)
$$

Мощность, поглощаемая опорами, определяется по формуле

$$
Q_{\text{bu}} = \frac{\mu}{2mf} P. \quad (12)
$$

Полученные значения составляющих потоков мощности приведены в табл. 2.

Рис. 6. Блок варирования коэффициентов жесткости C и вязкости μ магнитореологического вибросилятора
Таблица 2

<table>
<thead>
<tr>
<th>Составляющая механической мощности</th>
<th>Модель 1</th>
<th>Модель 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полезная мощность P_{rot}</td>
<td>590</td>
<td>595</td>
</tr>
<tr>
<td>Мощность линейных перемещений Q_{lin}</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Мощность пульсаций крутящего момента Q_{rot}</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>Мощность, рассеиваемая диссипативными силами Q_{im}</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

При проверке полученных результатов суммарные значения механических мощностей каждой из динамических моделей электропривода совпали как между собой, так и со значением номинальной мощности двигателя:

$$P_n = M 2\pi f = 628,3 \text{ кВт};$$
$$\Sigma S_1 = P_{rot} + Q_{lin} + Q_{rot} + Q_{im} = 628 \text{ кВт};$$
$$\Sigma S_2 = P_{rot} + Q_{lin} + Q_{rot} + Q_{im} = 628 \text{ кВт}.$$

Следует отметить, что обеспечение эффективной работы магнитореологических виброгасителей требует наличия внешнего источника энергии. Поскольку каждый электромагнит магнитореологического трансформатора имеет активное сопротивление $R_{im} = 420 \text{ Ом}$, то требуется дополнительная мощность равна:

$$P_{MRT} = 4 \cdot 420 \cdot 0,2^2 \approx 70 \text{ Вт}.$$

Электрическая мощность, потребляемая виброзащитной системой, почти в 80 раз меньше значения эквивалентной полезной мощности электродвигателя, полученного в результате имитационного моделирования.

Заключение

В настоящей статье были рассмотрены две динамические модели системы электрического привода: с установкой компонентов системы на виброизолаторы и без них. Передача механической энергии в таких системах сопровождается возникновением вибрационных процессов механической и электромагнитной природы.

Построенная имитационная модель позволяет исследовать динамические процессы в электроприводе, закрепленном на единой платформе с виброизолаторами, управляемыми параметрами. Из полученных диаграмм следует, что благодаря применению виброизолаторов совокупная сила, действующая на подшипники двигателя, уменьшается приблизительно в 1,5 раза.
Суммы потоков механической мощности обеих динамических моделей электропривода соответствуют расчетному значению активной мощности двигателя $P_a = 628$ кВт.

Сравнение спектрограмм двух динамических систем электропривода показало, что система, оснащенная активными виброгасителями, поглощает до 50% потоков пульсационной механической энергии электропривода, преимущественно изываемой из мощности линейных вибросположений.

Представленные результаты научно-исследовательской работы получены в рамках гранта Президента Российской Федерации для государственной поддержки молодых российских ученых (MK-590.2018.8).

Список литературы
2. Петров А.П. Раздаточные коробки передач. Курган: Курганский государственный университет, 2014. 40 с.
8. Методика диагностики и идентификации неисправностей обмоток асинхронного двигателя в режиме его функционирования / Мугалимов Р.Г., Мугалимова А.Р., Калугин Ю.А., Одинцов К.Ф. // Электротехнические системы и комплексы. 2018. № 3(40). С. 70-78.
11. Устранение гистерезисных эффектов в ферромагнитных сердечниках электромеханических преобразователей гидравлических виброопор / Гордеев Б.А., Осмешин А.Н., Охулков С.Н., Плехов А.С. // Вестник ИГЭУ. 2013. № 5. С. 64–68.

Поступила в редакцию 25 декабря 2018 г.

INFORMATION IN ENGLISH

VIBRATION POWER ESTIMATION IN ELECTRIC DRIVE

Artem I. Ermolaev

Postgraduate Student, Institute of Electric Power Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia. E-mail: acidwolfvfx@rambler.ru.

Aleksandr S. Plekhou

Ph.D. (Engineering), Associate Professor, Institute of Electric Power Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia. E-mail: aplehov@mail.ru.

Dmitry Yu. Titov

Ph.D. (Engineering), Associate Professor, Institute of Electric Power Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia. E-mail: d.titov@nntu.ru. ORCID: https://orcid.org/0000-0001-7320-984X.

Evgeny A. Chernou

Ph.D. (Engineering), Professor, Institute of Electric Power Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia. E-mail: evgenij.chernov.41@list.ru

This article considers the flow of mechanical power in the electric drive under the condition of vibration disturbances. The paper discusses two electric models mounted on a rigid base and shock absorbers. The transfer of mechanical energy in such systems causes oscillation as mechanical and electromagnetic nature. Viscoelastic elements create countervailing force preventing deviation from the equilibrium position of the system and substantially attenuating high frequency vibrations. Studies were conducted using the methods of simulation dynamic modeling and frequency analysis. The values of linear
displacements of the center of mass of the unbalanced rotor and the radial components of the forces acting on the engine bearings are obtained as a result of modeling. The action of the inertial force on the motor mounted on the rigid base is approximately 1.5 times greater than the effect of this force on the system equipped with magnetorheological shock absorbers. The estimation of mechanical power fluxes is made according to the spectrum of inertial force acting on the bearings. Spectrograms show that many pronounced harmonics are suppressed by the action of dissipative and elastic forces created by magnetorheological shock absorbers. The comparison of the spectrograms of the two dynamic systems showed that the system with active shock absorbers absorbs up to 50% of pulsating mechanical energy of vibration perturbations of the electric drive.

Keywords: electric drive, vibrations, damping, mechanical power flows, mathematical modeling, dynamic model of electric drive, vibration supports, viscoelastic base.

References

Применение метода роя частиц для определения углов переключения в алгоритме ширино-импульсной модуляции с удалением выделенных гармоник

Оптимальный выбор углов переключений в алгоритме ширино-импульсной модуляции (ШИМ) с удалением выделенных гармоник является сложным вопросом, включающим в себя решение нелинейных уравнений с бесконечным множеством решений. Для расчета углов переключений в данной статье предложен метод численной оптимизации роя частиц, который был модифицирован путем добавления в алгоритм переменного коэффициента инерции для каждой итерационной процедуры, что позволило повысить надежность алгоритма, избежать попадания в локальный экстремум и быстрее достичь глобального экстремума в полном пространстве решений. Предложенная реализация позволяет рассчитать несколько наборов углов переключений, что достаточно трудно получить традиционными методами оптимизации функций. В статье показаны результаты расчёта углов переключений для исключения гармоник низкого порядка в автономном режиме с помощью компьютера. Теоретические результаты анализируются и проверяются путем моделирования на примере трехуровневого преобразователя с фиксированной нейтральной средней точкой звена постоянного тока. Результаты моделирования показывают, что вышеупомянутый метод роя частиц эффективно определяет наборы углов переключений для алгоритма ШИМ с удалением выделенных гармоник, на основе которых можно добиться наилучшего показателя суммарного гармонического искажения (ТНД) выходного напряжения преобразователя. Это может быть достигнуто путем использования определённого набора переключений при различных коэффициентах модуляций. Результаты исследования могут быть использованы для разработки алгоритмов ШИМ с УВГ многоуровневых преобразователей.

Ключевые слова: преобразовательная техника, ШИМ с удалением выделенных гармоник, метод роя частиц, суммарный коэффициент гармонического искажения.

ВВЕДЕНИЕ

В последние годы многоуровневые преобразователи являются предметом пристального внимания исследователей в области больших мощностей и высоких напряжений. Многоуровневые топологии построения схем полупроводниковых преобразователей обладают преимуществами в отношении энергоэффективности, качества электроэнергии и уровню электромагнитных помех. Они широко используются для питания двигателей переменного тока с регулируемой скоростью вращения, в статических системах преобразования электрической энергии и гибких системах электроснабжения постоянного и переменного тока [1-6]. Ввиду низкой частоты коммутации высокомощных вентилей устранение определённых гармоник из выходного напряжения высокоомного преобразователя является актуальной задачей.

Для управления выходным напряжением преобразователя широко применяются традиционные методы широтно-импульсной модуляции (ШИМ), такие как синусоидальная ШИМ (СШИМ) и пространственно-векторная ШИМ (ПВШИМ). Однако алгоритмы модуляции на их основе не могут обеспечить устранение необходимых гармоник. Другой известный способ управления ключами преобразователя заключается в подавлении наиболее значимых по уровню гармоник посредством заранее определённых наборов углов переключений. Такой способ в отечественной литературе получил название ШИМ с удалением выделенных гармоник (ШИМ с УВГ) [7-9]. Алгоритм на основе ШИМ с УВГ может генерировать более качественное напряжение преобразователя по сравнению с СШИМ и ПВШИМ при одинаковой частоте коммутации полупроводниковых модулей. Основная трудность в реализации ШИМ с УВГ заключается в нахождении решения системы нелинейных уравнений, полученных из самой задачи приведения к нулю выделенных гармоник из периодического выходного напряжения преобразователя.

Анализ научной литературы показал, что для нахождения углов переключения ШИМ с УВГ часто используют итерационные численные методы. У них необходимо заранее определить начальные приближения, которые должны быть близки к правильному решению системы уравнений. Такие методы правильно и быстро находят решения при условии правильно выбранного начального приближения, но позволяют получить только один набор решений. В настоящее время становятся популярными методы на основе стохастического поиска, такие как генетический алгоритм (ГА) [14-16] и оптимизационный метод роя частиц (МРЧ) [17-19]. Вышеупомянутые неудобства, существующие в классических итерационных методах, удовлетворительно преодолеваются с помощью ГА и МРЧ.

В данной статье для удаления выделенных гармоник был использован модифицированный МРЧ, основанный на добавлении переменного коэффициента инерции для каждой итерационной процедуры. Статья организована следующим образом: обозначена формулировка проблемы; показан принцип и этапы выполнения предложенного алгоритма МРЧ; приведены результаты моделирования зависимостей углов переключений, коэффициента модуляции и суммарно гармонического искажения (ТНД) выходного напряжения; представлены основные выводы по работе.

© Радионов А.А., Маклаков А.С., Цзин Тао, 2019
ФОРМУЛИРОВКА ПРОБЛЕМЫ ДЛЯ ШИМ С УВГ

На рис. 1, а показана схема трехуровневого преобразователя с фиксированной нейтральной средней точкой звена постоянного тока (трёхуровневый преобразователь). Схема включает по четыре полупроводниковых модуля S₁₂, S₁₃, S₁₄ и S₁₅, с обратными диодами в каждом фазном плече моста, два эквивалентных конденсатора C₁ и C₂, образующих постоянное напряжение Uₘₐₓ. Для данного устройства применяется метод ШИМ с УВГ, при котором расчёт углов переключения αₙ необходим для генерации сигналов управления включение/выключение модулей с целью формирования кривой выходного фазного напряжения, как показано на рис. 1, б, где Uₙₐ₀ – напряжение фазы A, ω – угловая частота, t – время.

В методе ШИМ с УВГ для определения всех гармоник выходного фазного напряжения преобразователя используется анализ Фурье. С помощью преобразования Фурье периодическая функция напряжения получается в виде

\[V_{A0}(\omega t) = \sum_{n=1}^{\infty} \left[A_n \sin(n\omega t) + B_n \cos(n\omega t) \right]. \]

(1)

Принимая во внимание четвертьволновую симметрию напряжения каждой фазы, чётные гармоники будут отсутствовать (т.е. Bₙ = 0), а составляющие n-й нечётной гармоники определяются углами переключения первой четверти периода как

\[A_n = \left\{ \begin{array}{ll}
\frac{4}{n\pi} \sum_{k=1}^{\infty} (-1)^{k+1} \cos(n\alpha_k), & n=\text{чётные}; \\
0, & n=\text{нечётные},
\end{array} \right. \]

(2)

при условии, что

\[0 < \alpha_1 < \alpha_2 < \ldots < \alpha_N < \frac{\pi}{2}. \]

(3)

Выходное напряжение (N – нечётная)

В системе (2) A₁ определяет основную гармонику напряжения преобразователя, а Aₙ, где n ≠ 1, определяет высшие гармоники, которые необходимо исключить. Для поддержания постоянного уровня основной гармоники и одновременного устранения выбранного количества высших гармоник система (2) решается как

\[\begin{aligned}
A_1(\alpha) &= \frac{4}{\pi} \sum_{k=1}^{\infty} (-1)^{k+1} \cos(\alpha_k) = M; \\
A_2(\alpha) &= \frac{4}{5\pi} \sum_{k=1}^{\infty} (-1)^{k+1} \cos(5\alpha_k) = 0; \\
A_4(\alpha) &= \frac{4}{7\pi} \sum_{k=1}^{\infty} (-1)^{k+1} \cos(7\alpha_k) = 0; \\
& \vdots \\
A_n(\alpha) &= \frac{4}{n\pi} \sum_{k=1}^{\infty} (-1)^{k+1} \cos(n\alpha_k) = 0,
\end{aligned} \]

(4)

где M – коэффициент модуляции, который вычисляется по формуле \(M = A_1/|V_{dc}/2| \).

Таким образом, система нелинейных уравнений формируется на основе заданного уровня основной гармоники и подлежащих удалению выделенных гармоник. Третьи гармоники не учитывается в системе (4), так как рассматривается симметричная трёхфазная система напряжений. Очевидно, что N-1 гармоник можно устранить с помощью N количества углов переключений за четверть периода выходного напряжения преобразователя. Система уравнений (4) имеет множество решений в пределах заданных условий, а также имеет особенность разрыва при некоторых значениях углов переключений \(\alpha = [\alpha_1, \alpha_2, ..., \alpha_N] \), при которых не существует правильного решения [13, 20].

ПРИНЦИП МЕТОДА РОЯ ЧАСТИЦ

Метод роя частиц впервые был предложен Кеннеди и Эберхартом в 1995 году как популяционный алгоритм эвристического и стохастического поиска [18]. Простота исполнения и способность быстро сходиться к достаточно хорошему решению делают его привлекательным для многих учёных при решении широкого спектра задач оптимизации.

В системе МРЧ рой частиц движется в D-мерном пространстве – области поиска. Первоначально частицы расположены во всей области поиска и имеют собственные случайный вектор скорости. Затем каждая частица начинает двигаться в определенном направлении до некоторой точки, в которой рассчитывается значение целевой функции. Все частицы запоминают своё лучшее значение целевой функции и получают информацию о результатах поиска других частиц во всей области поиска. После каждого обновления своего местоположения частицы корректируют вектор скорости таким образом, чтобы быть ближе к своей наилучшей позиции pbest, а также приближаться к лучшей глобальной позиции gbest, достигнутой всеми частицами в рое на их пути. Графическая интерпрета-
ция обновления скорости и положения в механизме поиска МРЧ для одной частицы показана на рис. 2.

Рис. 2. Упрощенная концепция механизма поиска МРЧ

Вектор скорости $v_i=[v_{i1},v_{i2},...,v_{iD}]$ каждой частицы в пространстве обновляется с помощью выражения (5), а затем посредством выражения (6) обновляется вектор положения частицы $x_i=[x_{i1},x_{i2},...,x_{iD}]$ на текущей итерации [18-19]. Движение всех частиц в пространстве решений приводит к общему решению, которое принимается для расчёта оптимального значения целевой функции.

$$v_{i}^{k+1} = \omega v_{i}^{k} + c_1 r_1 (p\text{best}_i ^k - x_{i} ^k) + c_2 r_2 (gbest^k - x_{i} ^k),$$ \hspace{1cm} (5)

$$x_{i}^{k+1} = x_{i}^{k} + v_{i}^{k+1},$$ \hspace{1cm} (6)

где k – номер итерации; ω – инерционный вес; c_1 и c_2 – весовые коэффициенты; r_1 и r_2 – случайные числа [0, 1].

Первая составляющая выражения (5) называется «коэффициент инерции» и является важным параметром для сходимости алгоритма МРЧ, так как с помощью этого параметра можно регулировать влияние предыдущей скорости на текущую скорость. Вторая составляющая называется «когнитивный компонент» и является результатом поиска каждой частицы. Третья составляющая называется «социальный компонент» и является результатом общего поиска всех частиц. Новые значения pbest и gbest обновляются с помощью выражения (5). Оптимальным решением системы будет значение $p\text{best} = g\text{best}$.

Коэффициент инерции ω играет важную роль в балансе между локальными и глобальными решениями в поиске. Большее значение коэффициента ω способствует глобальному поиску, а меньшее – локальному. Таким образом, чтобы избежать преждевременной сходимости, было рассмотрено переменное значение ω, где наибольшее значение используется в начальных итерациях и постепенно уменьшается в последующих итерациях согласно выражению

$$\omega^k = \omega_{\text{max}} - \frac{\omega_{\text{max}} - \omega_{\text{min}}}{\text{iter}_{\text{max}}} k,$$ \hspace{1cm} (7)

где ω_{min} и ω_{max} – минимальный и максимальный весовые коэффициенты инерции, iter_{max} – максимальное количество итераций.

МРЧ для определения переключений в ШИМ с УВГ

Для того чтобы найти оптимальные углы переключения в системе неплайнхейных уравнений (4) с помощью МРЧ, необходимо выполнить следующие шаги:

Шаг 1. Определение параметров размера популяции (количество частиц) N, размерность пространства частиц D, максимальное количество итераций iter_{max}. Необходимо определить нижнюю и верхнюю границы скорости и положения частицы. Для рассматриваемой ШИМ с УВГ с учетом четвертьволновой симметрии выходного напряжения преобразователя вектор положения каждой частицы случайным образом инициализируется от 0 до $\pi/2$. Вектор скорости каждой частицы определяется случайным образом от v_{min} до v_{max}. Размерность пространства частиц D будет соответствовать количеству углов переключений от α_1 до α_D.

Шаг 2. Оценка ожидаемого значения целевой функции для каждой частицы будет выполняться в D переменных. Устранение выделенных гармоник является целью метода ШИМ с УВГ, следовательно, целевая функция должна быть сведена к минимуму, и она связана с требуемым значением основной гармоники напряжения преобразователя и подлежащими удалению гармониками. В качестве задачи оптимизации, включающей приведенное выше описание, применима целевая функция $f(\alpha)$ в виде

$$\min \left(f(\alpha) = |M - A_1(\alpha)| + |A_2(\alpha)| + \ldots + |A_{D-2}(\alpha)| \right),$$ \hspace{1cm} (8)

при условии: $0 < \alpha_1 < \alpha_2 < \ldots < \alpha_D < \pi/2$.

Шаг 3. Регулировка pbest и gbest. Если текущая позиция одной частицы лучше её предыдущей позиции pbest, то предыдущее значение pbest должно быть занесено текущей позицией. Точно так же предыдущее значение gbest должно быть занесено текущим лучшим положением gbest. Таким образом, значения pbest и gbest можно изменять на каждой итерации.

Шаг 4. На каждой итерации частицы движутся по пространству поиска со своей собственной скоростью и положением. Скорость и положение каждой частицы изменяются на основе выражений (5) и (6).

Шаг 5. Обработка граничных условий. Если скорость или положение частицы превышает нижнюю или верхнюю границу, то она должна быть случайным образом вновь определена между нижней и верхней границами.

Шаг 6. Достигнутое достаточно хорошее значение целевой функции или превышение максимального количества итераций определяется как критерий остановки алгоритма.

МРЧ находит все возможные наборы решений и в итоге получается несколько наборов углов переключений для устранения выделенных гармоник. В табл. 1 приведены используемые при реализации метода МРЧ параметры.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Величина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Размер популяции N</td>
<td>100</td>
</tr>
<tr>
<td>Размерность пространства поиска D</td>
<td>3 или 5</td>
</tr>
<tr>
<td>Максимальное количество итераций iter_{max}</td>
<td>300</td>
</tr>
<tr>
<td>Весовой коэффициент c_1</td>
<td>1,49445</td>
</tr>
<tr>
<td>Весовой коэффициент c_2</td>
<td>1,49445</td>
</tr>
<tr>
<td>Максимальный вес инерции ω_{max}</td>
<td>0,7</td>
</tr>
<tr>
<td>Минимальный вес инерции ω_{min}</td>
<td>0,2</td>
</tr>
<tr>
<td>Верхняя граница пространства x_{max}</td>
<td>$\pi/2$</td>
</tr>
<tr>
<td>Нижняя граница пространства x_{min}</td>
<td>0</td>
</tr>
</tbody>
</table>
Результаты моделирования

Предложенный МРЧ для ШИМ с УВГ реализован в программе Matlab с помощью m-файла. В написанном коде программы углы переключения вычисляются для каждого значения коэффициента модуляции M от 0,7 до 1 с шагом 0,01. Результаты расчёта углов переключения загружены в табличном виде в реализованную в программу Matlab/Simulink модель трехуровневого преобразователя с фиксированной нейтральной средней точкой звена постоянного тока для генерации сигналов управления ключами.

Удаление 5-й и 7-й гармоник из выходного напряжения преобразователя

В соответствии с выражением (4) функция устранения 5-й и 7-й гармоник должна быть решена при неизвестных α_1, α_2, α_3, следовательно, целевая функция в этом случае определена как

$$\min \left(f(\alpha) = |M - A_1(\alpha)| + |A_2(\alpha)| + |A_7(\alpha)| \right).$$

(9)

Результаты моделирования показаны на рис. 3, а, б, где видно, что траектории углов переключений для устранения 5-й и 7-й гармоник могут быть разными, а также значения THD (рис. 4) для каждого коэффициента модуляции M неодинаково.

Для более наглядного сравнения полученных результатов в табл. 2 приведены углы переключения, коэффициенты гармоник и THD выходного напряжения при коэффициентах модуляции 0,7 и 0,9 для двух рассматриваемых наборов переключений.

Международным стандартом IEEE-519 рекомендуется, чтобы уровень каждой отдельной гармоники был не более 3% от основной составляющей. Из табл. 2 видно, что 5-я и 7-я гармоники эффективно устраняются посредством двух различных наборов углов переключений. Однако суммарный уровень гармонического искажения при одинаковых значениях коэффициента модуляции различный. Следовательно, для снижения THD напряжения несколько наборов переключений могут быть более эффективно использованы на всём диапазоне изменения коэффициента модуляции.

Удаление 5-й, 7-й, 11-й и 13-й гармоник из выходного напряжения преобразователя

Функция устранения 5-й, 7-й, 11-й и 13-й гармоник должна быть решена при неизвестных α_1, α_2, α_3, α_4, α_5, и целевая функция в этом случае определяется как

$$\min \left(f(\alpha) = |M - A_5(\alpha)| + |A_7(\alpha)| + |A_{11}(\alpha)| + |A_{13}(\alpha)| \right).$$

(10)

Полученные траектории различных углов переключения представлены на рис. 5. На рис. 6 показана взаимосвязь между каждым значением THD выходного напряжения и соответствующим коэффициентом модуляции.

В табл. 3 приведены углы переключения, коэффициенты гармоник и THD напряжения при коэффициентах модуляции 0,7 и 0,9 для трёх рассматриваемых наборов переключений. Из табл. 3 видно, что использование предложенного подхода реализации МРЧ в алгоритме ШИМ с УВГ позволяет устранить нежелательные гармоники, в то же время сохраняя заданный уровень основной гармоники.
ЗАКЛЮЧЕНИЕ

Использование метода роя частиц для определения углов переключения в алгоритме широтно-импульсной модуляции с удалением выделенных гармоник позволяет получить несколько наборов углов переключений и обеспечить при этом эффективное подавление выбранных гармоник. Кроме того, использование различных наборов переключений позволяет минимизировать суммарный индекс гармонического искажения на всем диапазоне изменения коэффициента модуляции преобразователя. Это может быть достигнуто путем использования определенного набора переключений при различных коэффициентах модуляции. Результаты исследований могут быть использованы для разработки алгоритмов ШИМ с УВЧ многоуровневых преобразователей.

СПИСОК ЛИТЕРАТУРЫ
INFORMATION IN ENGLISH

USING OF PARTICLE SWARM OPTIMIZATION FOR SELECTIVE HARMONIC ELIMINATION TECHNIQUE

Andrey A. Radionov
D.Sc. (Engineering), Professor, Department of Mechatronics and Automation, South-Ural State University, Chelyabinsk, Russia. E-mail: radionov.mail@gmail.com.

Alexandr S. Maklakov
Ph.D. (Engineering), Associate Professor, Department of Mechatronics and Automation, South-Ural State University, Chelyabinsk, Russia. E-mail: maklakov.work@gmail.com.

Jing Tao
Postgraduate Student, Department of Mechatronics and Automation, South-Ural State University, Chelyabinsk, Russia.

Solving of nonlinear transcendental equations with multiple solutions is a complex task of selective harmonic elimination. Pulse-width modulation (PWM) is a widely used technique for multilevel converters. The present work employs a particle swarm optimization (PSO) approach to minimize the specified costs of harmonic elimination. This approach is suitable for problems with multiple solutions. The results of the optimization are then used to design SHEPWM algorithms for three-level converters.

Keywords: power electronics, selective harmonic elimination, particle swarm optimization, total harmonic distortion.

REFERENCES

Поступила в редакцию 11 января 2019 г.
18. J. Kennedy and R. Eberhart. Particle swarm optimization. Proceedings of International Conference on Neural Net-

ФОРМИРОВАНИЕ ШАБЛОНОВ ПЕРЕКЛЮЧЕНИЙ ТРЕХУРОВНЕВОГО ИНВЕРТОРА
С ВЕКТОРНОЙ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИЕЙ

В статье рассмотрены способы формирования шаблонов переключений трехуровневого инвертора с пространственно-векторной широтно-импульсной модуляцией (ШИМ). Шаблоны представляют собой комбинацию переключений трех ближайших векторов из их совокупности, представленной в форме известного шестнадцатеричного пространственных векторов. Формированием задающего вектора с участием трех базовых векторов известно в литературе под названием NTV (Nearest Three Vectors). В зависимости от величины коэффициента модуляции, принимаемого значения от 0 до 1, выделяют три различных диапазона. Предметом исследования данной статьи является оптимизация шаблонов переключений во всех диапазонах с целью уменьшения числа коммутаций ключей инверторов электроприводов большой мощности. Дан анализ гармонического состава выходного напряжения инвертора при различных величинах коэффициента модуляции и оптимизированном алгоритме переключений. Отмечено, что оптимизированные алгоритмы векторной ШИМ с пониженным числом переключений позволяют уменьшить коммутационные потери и сохранить приемлемый гармонический состав выходного напряжения инвертора. Результаты исследования получены на основе имитационного моделирования в среде Matlab Simulink.

Ключевые слова: трехуровневый инвертор с фиксированной нейтральной точкой, векторная широтно-импульсная модуляция, шаблоны переключений, коэффициент модуляции.

ВВЕДЕНИЕ

В современных электроприводах большой мощности широко используются двухзвенные преобразователи частоты на базе трехуровневых инверторов напряжения с фиксированной нейтральной точкой NPC-VSI (Neutral Point Clamped Voltage Source Inverter) [1, 2].

Для формирования выходного напряжения трехуровневого инвертора (рис. 1) наиболее часто используют метод пространственно-векторной ШИМ, или SVPWM (Space Vector Pulse Width Modulation), обла дающий значительной гибкость [3].

В работах [4-7] данный метод ШИМ описан применительно к электроприводам малой и средней мощности, для которых частота модуляции составляет единицы килогерц. В приводах большой мощности указанная частота значительно ниже и составляет порядка 250-450 Гц. Несмотря на это, актуальной проблемой является снижение коммутационных потерь в силовых ключах за счет дальнейшего уменьшения числа переключений при сохранении частоты модуляции. Одним из вариантов решения этой проблемы является использование синхронного метода модуляции, для которого частота ШИМ кратна частоте основной гармоники выходного напряжения инвертора. Преимуществом такого метода является предварительная подготовка положений задающего вектора и, как следствие, возможность оптимизации траектории переключений между этими положениями [8, 9].

Плоскость базовых векторов для трехуровневого инвертора содержит 19 векторов, которые подразделяются на четыре группы: 6 длинных (L), 6 средних (M), 6 коротких (S) и один нулевой (O) [10, 11].

Согласно методу пространственно-векторной ШИМ, из множества базовых векторов выбираются три вектора, наиболее близко расположенных к зада чеу U_{ref} (рис. 2). Такой подход получил название NTV (Nearest Three Vectors). Расчет продолжительности включения каждого из них осуществляется по определенному алгоритму [3, 5]. Работка положений задающего вектора в фиксированные моменты времени осуществляется в элементарных циклах путем последовательного применения трех выбранных базовых векторов с учетом рассчитанных продолжительностей включения. В зависимости от принадлежности задающего вектора одной из четырех областей A1, A2, A3 или A4 элементарный цикл реализуется одним из классических шаблонов переключений [3]:

\[
\begin{align*}
A_1 &= \left(o - a + c - b - o - b - a + c - o \right) \\
&\quad - \left(o - a - b + c - o - b - a - c \right) \\
A_2 &= \left(a - c - b - a - c - b - a - c \right) \\
&\quad - \left(a - c - b - a - c - b - a - c \right) \\
A_3 &= \left(b - a - b + c - b - a - b + c - b \right) \\
&\quad - \left(b - a - b + c - b - a - b + c - b \right) \\
A_4 &= \left(b - a - b + c - b - a - b + c - b \right) \\
&\quad - \left(b - a - b + c - b - a - b + c - b \right).
\end{align*}
\]

Сформированные выше области A1-A4 принадлежат первому сектору A шестигранника базовых векторов. Всего подобных секторов шесть, наборы базовых векторов в них одинаковые, отличие состоит только в комбинации состояния силовых ключей при реализации этих векторов. В связи с этим формирование шаблонов переключений достаточно рассмотреть на примере сектора A.

Оптимизация шаблонов переключений с целью уменьшения числа коммутаций ключей инверторов большой мощности является предметом исследования данной статьи.
ИЗМЕНЕНИЕ ШАБЛОНОВ ПЕРЕКЛЮЧЕНИЙ В ЗАВИСИМОСТИ ОТ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА МОДУЛЯЦИИ

В процессе широтно-импульсной модуляции изменяются два основных параметра вектора задающего напряжения: коэффициент модуляции \(k \), характеризующий амплитуду вектора, и его угловое положение \(\Theta \) [12]. При неизменном коэффициенте модуляции, вектор \(U_{\text{ref}} \) вращается по окружности радиусом \(k \).

На рис. 3, а представлен сектор \(A \), в котором изменение угла \(\Theta \) происходит в диапазоне от 0 до 60°. В секторе показаны дуги окружностей, на которых равномерно расположены точки, изображающие положение задающего вектора напряжения в фиксированные моменты времени и следующее друг за другом с периодом ШИМ. Число точек на дуге окружности в пределах сектора соответствует числу элементарных циклов. Выполним расчет количества элементарных циклов \(N_k \), соответствующих одному сектору. Эта величина зависит от частоты ШИМ и частоты выходного напряжения инвертора.

Для инверторов большой мощности примем частоту ШИМ равной \(f_{\text{PWM}} = 450 \) Гц. Для мощных прокатных двигателей номинальная частота первой гармоники напряжения \(f_1 \) составляет величину, значительно меньшую промышленной – порядка 20 Гц. Количество элементарных циклов за четверть периода \(N_s \) рассчитывается по формуле

\[
N_s = \frac{f_{\text{PWM}}}{f_1} = \frac{450}{20} = 22.5.
\]

Следует отметить, что величина \(N_s \) обратно пропорциональна частоте вращения двигателя и по мере ее снижения число переключений необходимо увеличивать, что способствует улучшению качества кривой выходного напряжения.

Расчет показателя \(N_k \) выполняем по формуле

\[
N_k = \frac{2}{3} N_s = \frac{2}{3} \cdot 22.5 = 15,
\]

где коэффициент 2/3 связывает угловые длительности сектора 60° и четверти периода 90°.

На рис. 3, а количество точек, расположенных на дуге окружности, равно \(N_k \). При этом радиусы окружностей соответствуют различным значениям коэффициента модуляции \(k \), которые подобраны таким образом, что в область \(A3 \) попадает целое нечетное число точек 1, 3, ..., 15.

Нижняя дуга окружности на рис. 3, а, включающаяся в себя 15 точек в области \(A3 \), ограничена коэффициентом модуляции \(k = 0,567 \); верхняя - включает 1 точку в области \(A3 \) с коэффициентом \(k = 1,0 \). Совокупность всех точек, изображенных на рис. 3, а, образует диапазон 1 коэффициента модуляции (рис. 3, б). В пределах этого диапазона (0,567 < \(k < 1,0 \)) используются шаблоны циклов переключения для областей \(A2, A3 \) и \(A4 \). В следующем диапазоне II (0,5 < \(k < 0,567 \)) циклы переключений по мере уменьшения коэффициента модуляции перемещаются из области \(A3 \) в \(A1 \); соответственно диапазон III характеризуется использованием шаблонов \(A3 \) и \(A1 \). В диапазоне III (0 < \(k < 0,5 \)) участвует только шаблон \(A1 \).
ОПТИМИЗАЦИЯ ШАБЛОННЫХ ПЕРЕКЛЮЧЕНИЙ

Снижение числа переключений силовых ключей инвертора и, следовательно, уменьшение коммутационных потерь при сохранении частоты модуляции предлагается осуществлять за счет применения комплекта из трех решений.

1. Классические шаблоны переключений сформированы таким образом, что каждый из трех базовых векторов используется в них дважды. В результате в начале и конце шаблона расположен один и тот же вектор. Такой подход позволяет легко соединять шаблоны последовательно между собой, но увеличивает число переключений.

Для отработки фиксированных положений задающего вектора напряжения в качестве элементарных циклов предлагается использовать левую или правую половину классического шаблона переключений A2:

\[A2p = (ap - c - a - an); \ A2n = (an - a - c - ap). \]

Это справедливо и для классического шаблона области A4:

\[A4p = (bp - b - c - bn); \ A4n = (bn - c - b - bp). \]

Во введенных обозначениях индекс p или n совпадает с полярностью вектора \(ap \) или \(an \), расположенного в начале шаблона переключения.

Применение укороченных шаблонов A2p, A2n, A4p и A4n позволяет снизить число переключений силовых ключей в два раза.

2. В классической методике пространственно-векторной (ПВ) модуляции допускается стыковка шаблонов разноименными векторами. Например, переход из области A2 в A3 предполагал смену вектора \(ap \) на \(bp \), что вносило дополнительные переключения:

\[A2 \rightarrow A3; \]

\[(ap - c - a - an) \rightarrow (an - a - c - ap) \rightarrow (bp - ap - c - bn - an) \rightarrow (an - bn - c - ap - bp). \]

Для укороченных шаблонов предлагается ввести следующее правило: каждый последующий шаблон переключений должен начинаться с вектора, на котором закончился предыдущий шаблон. Это позволяет не вводить дополнительных переключений при стыковке шаблонов. В процессе вращения задающего вектора переход от одного элементарного цикла к другому (см. рис. 3, а) возможен как при сохранении области сектора, так и со сменой области. В качестве примера показаны два последовательных перехода – в пределах области A2 и из области A2 в область A3:

\[A2n \rightarrow A2p \rightarrow A3n; \]

\[(an - a - c - ap) \rightarrow (ap - c - a - an) \rightarrow (an - bn - c - ap - bp). \]

В представленных выше переходах используются укороченные шаблоны, стыковка которых производится по одноименным векторам.

3. Укороченные шаблоны области A3 содержат по два коротких вектора одинаковой полярности в начале и конце:

\[A3p = (bp - ap - c - bn - an); \]

\[A3n = (an - bn - c - ap - bp). \]

Необходимым условием обеспечения балансировки напряжений конденсаторов звена постоянного тока инвертора является присутствие в шаблоне как минимум двух коротких векторов разной полярности, например, aplan или bplan. Предлагается ввести четыре новых шаблона переключений в области A3, в каждом из которых отсутствует один из коротких векторов:

\[A3p_a = (ap - c - bn - an); \]

\[A3p_b = (bp - ap - c - bn); \]

\[A3n_a = (an - bn - c - ap); \]

\[A3n_b = (bn - c - ap - bp). \]

Дополнительный индекс a или b указывает на тип вектора, с которого начинается шаблон.

Последнее решение позволяет дополнительно снизить число переключений, как показано на рис. 4, а, для диагонали I, где кривая I соответствует числу переключений \(N_0 \) за четвертый период при использовании классических шаблонов; кривая 2 – при использовании укороченных шаблонов в областях A2 и A4; кривая 3 – при дополнительном введении шаблонов в области A3 (A3p_a, A3p_b, A3n_a и A3n_b). Величина \(N_{A3} \) устанавливается на число элементарных циклов в области A3.
Промышленная электроника, автоматика и системы управления

В столбцах этой таблицы указаны шаблоны переключений для каждого из пяти циклов элементарных инверторов, определяемых положением задающего вектора, как это показано на рис. 3, а. Строики таблицы несут информацию об интервалах изменения коэффициента модуляции, в пределах которых число элементарных циклов \(N_{ij} \) в области \(A3 \) равно 1, 3, 15.

Таким образом, шаблон переключений выбирается по известным значениям коэффициента модуляции \(k \) и номеру элементарного цикла \(n \). Показатели \(k \) и \(n \) связаны с амплитудой \(U_n \) и угловым положением \(\Theta \), град задающего вектора следующим образом:

\[
 k = \frac{U_n}{U_a} \sqrt{3}; \quad n = \text{ceil}\left(\frac{N_s}{60} \right),
\]

где ceil(x) — функция округления до ближайшего большего целого числа.

Разработанные решения рассмотрены на примере диапазона I как наиболее сложного случая, в котором задействованы три области: \(A2, A3 \) и \(A4 \). В диапазоне II задействованы только две области \(A1 \) и \(A3 \) и оптимизация шаблонов переключений для этого диапазона осуществляется аналогичным образом. Поскольку диапазон III связан только с областью \(A1 \), то при оптимизации шаблонов переключений используются решения по п. 1 и 2.

Результаты моделирования

С помощью разработанной математической модели, реализованной в программной среде Matlab Simulink [13,14], проведены исследования работы трехуровневого NPC-инвертора при оптимизированном алгоритме переключений ПВ ШИМ для двух значений коэффициентов модуляции диапазонов I и II с целью оценки гармонического состава выходного напряжения.

На рис. 6, а показан график изменения фазового напряжения для коэффициента модуляции \(k=0.8 \) (диапазон I); на рис. 6, б приведен график изменения модуля базового вектора, который обозначается \(O, S, M \) или \(L \) в зависимости от типа выбранного вектора. Мгновенные значения выходного линейного напряжения инвертора показаны на рис. 6, в, а его гармонический состав представлен на рис. 6, г.

Шаблоны переключений в диапазоне I сектора A

В столбцах этой таблицы указаны шаблоны переключений для каждого из пяти циклов элементарных

![Diagram](image.png)
Результаты моделирования при $k=0.503$ (диапазон II) приведены на рис. 7. Следует отметить, что при смене полярности фазного напряжения для коэффициентов модуляции в диапазоне II (рис. 7, а) в отличие от диапазона I (рис. 6, а) наблюдается двухполарные переключения в пределах одного шаблона. Это связано с прохождением задающего вектора напряжения через область $A1$ (см. рис. 2), шаблоны которой содержат короткие S и нулевые O базовые векторы. В свою очередь, для случая на рис. 6, б применяются шаблоны, в которых задействованы средние M и длиные L базовые векторы, а нулевые O не используются.

Рис. 6. Результаты моделирования при $k=0.8$ и оптимизированных шаблонах переключения
(а – фазное напряжение; б – модуль базового вектора; в – линейное выходное напряжение инвертора;
гр – гармонический спектр выходного линейного напряжения инвертора)
Число уровней в кривой линейного напряжения инвертора зависит от значения коэффициента модуляции. В диапазоне I линейное напряжение имеет 5-уровневую форму (рис. 6, а), в диапазоне II – 3-уровневую (рис. 7, а).

Гармонический состав линейного напряжения инвертора существенно меняется при уменьшении коэффициента модуляции. В первом случае $k=0,8$ наиболее значимыми гармониками являются 89-я и 91-я (см. рис. 6, а), амплитуды которых достигают 18%. Во втором случае $k=0,503$ область наиболее значимых гармоник переместилась в диапазон от 133-й по 137-ю с такой же амплитудой. В общем, при сравнении графиков на рис. 6, а и рис. 7, а следует заметить, что произошло перераспределение значимых гармоник на частотном диапазоне из области 83-я – 97-я в области 41-й – 49-й и 131-й – 139-й гармоник. При этом увеличилось общее содержание высших гармоник в кривой линейного напряжения THD U с 38 до 52%. С учетом того, что гармоники напряжения имеют столько высокий порядок, следует ожидать, что их присутствие в токе будет весьма незначительным.
ЗАКЛЮЧЕНИЕ

Результаты исследований оптимизированных алгоритмов переключений векторной ШИМ для трехфазного NPC-инвертора позволяют сделать следующие выводы:

– использование оптимизированных шаблонов позволяет снизить число переключений силовых ключей. Этот факт особенно важен при работе инверторов в составе мощных электроприводов, где частота выходного напряжения меняется в пределах десятков герц;

– укороченные шаблоны переключений не привели к существенному ухудшению гармонического состава напряжения и наиболее значимые гармоники при разных значениях коэффициента модуляции находятся в области высоких частот. Следовательно, искажение синусоидальности кривой выходного тока инвертора при использовании оптимизированных алгоритмов переключения окажется незначительным. Это связано с тем, что преобразование гармоник более высоких частот в ток ограничено большим реактивным сопротивлением индуктивных элементов.

Отмеченные результаты показывают, что предложенные оптимизированные алгоритмы переключений векторной ШИМ с уменьшенным числом переключений в шаблонах позволяют значительно снизить коммутационные потери трехфазного NPC-инвертора и сохранить приемлемый гармонический состав кривой выходного линейного напряжения инвертора.

СПИСОК ЛИТЕРАТУРЫ

Поступила в редакцию 18 января 2019 г.
The article describes the methods of forming switching patterns of a three-level inverter with space-vector pulse-width modulation (PWM). Patterns are a combination of switching of the three nearest vectors from their set represented in the form of a well-known hexagon of basic vectors. The formation of the reference vector involving three basic vectors is known in the literature as NTV (Nearest Three Vectors). Depending on the magnitude of the modulation index taking values from 0 to 1, there are three different ranges. The aim of the research of this article is to optimize switching patterns in all ranges in order to reduce the number of commutation of inverter switches of high-power electric drives. The analysis of the inverter output voltage harmonics is given for different values of the modulation index and an optimized switching algorithm. It is noted that the optimized vector PWM algorithms with a reduced number of switching makes it possible to reduce switching losses and preserve the acceptable harmonic composition of the inverter output voltage. The results of the study were obtained on the basis of simulation modeling in the Matlab Simulink environment.

Keywords: Three-level NPC-inverter, space vector pulse-width modulation, switching patterns, modulation index.

REFERENCES

СИСТЕМА ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА ИЗОЛЯЦИИ ОБМОТКИ АСИНХРОННОГО ДВИГАТЕЛЯ НА ОСНОВЕ ЕМКОСТНЫХ ТОКОВ УТЕЧКИ

В статье изложен подход к построению системы оценки расхода ресурса и прогнозирования состояния изоляции обмоток асинхронных электродвигателей на основе емкостных токов утечки. Подход базируется на основе измерения емкостных токов утечки, создаваемых непрерывной последовательностью прямоугольных импульсов напряжения. Уменьшение величины этих токов свидетельствует об уменьшении остаточного ресурса изоляции обмоток. Эксперименты показывают экспоненциальное уменьшение токов утечки вследствие развития деградационных процессов в изоляции в долговременном плане. Оценку величины остаточного ресурса предложено выполнять с помощью моделирующей эксперимента, параметры которой восстанавливаются в текущем режиме с помощью методов идентификации параметров, так как метод наименьших квадратов (МНК) или методы, основанные на Калмановском алгоритме. Преимуществом предлагаемого метода является сравнительная простота используемых технических средств и возможность выполнять оценку остаточного ресурса изоляции обмоток, опираясь только на экспериментально полученные посредством измерения данные. В статье описан алгоритм работы системы прогнозирования состояния изоляции на основе идентификации параметров моделирующей эксперимента. Показана возможность прогнозирования остаточного ресурса, выраженного в единицах времени, как разности между прогнозируемым временем выхода из строя и текущим моментом времени, где под текущим временем подразумевается время наработки. Приведены результаты моделирования работы предлагаемого алгоритма с идентификацией параметров моделирующей эксперимента на основе МНК. Моделировалась работа алгоритма с интервалом измерений 100 ч при гауссовском законе распределения непрерывности измеренных значений тока утечки с радиальным квадратичным отклонением 20%. Показано, что значения параметров моделирующей эксперимента достаточно хорошо сходятся к истинным значениям при таком уровне шумов даже без использования предфильтрации последовательности измеренных значений тока утечки.

Ключевые слова: асинхронный двигатель, обмотка статора, изоляция обмотки, остаточный ресурс, токи утечки, диагностика, оценка состояния изоляции, прогнозирование состояния изоляции, идентификация параметров, метод наименьших квадратов.

ВВЕДЕНИЕ

Асинхронные двигатели (АД) – самый распространенный тип электродвигателей. При всей надежности таких двигателей, ежегодный выход их из строя достигает 20-25% [1]. В некоторых отраслях усредненный ресурс электродвигателей переменного тока навыше менее нормативного; например, в сельском хозяйстве он меньше в 2,5-3,5 раза [2]. Значительная доля выходов АД из строя связана с повреждением обмоток статора [3, 4]. Это объясняется тем, что изоляция обмотки статора АД выступает в роли “слабого звена”, подверженного различного рода неблагоприятных воздействиям, таком как температура, агрессивная среда и т.п. Эти обстоятельства предопределяют важность проблемы оценки остаточного ресурса изоляции обмотки статора АД.

Одним из важнейших факторов, влияющих на долговечность изоляции обмотки, является температура. В [5, 6] получено выражение для интервала времени \(T_{R} \), в течение которого изоляция достигает своего предельного состояния вследствие термического старения

\[
T_{R} = k \cdot \exp \left(\frac{B}{Q - G} \right), \tag{1}
\]

где \(k \) – коэффициент пропорциональности (\(k=1 \), если срок службы изоляции измеряется в часах); \(B \) и \(G \) – постоянные; \(Q \) – абсолютная температура.

С использованием выражения (1) можно ввести понятие остаточного термического ресурса изоляции \(R_{res} \) как безразмерной величины, связывающей скорость старения изоляции при температуре, соответствующей номинальному режиму работы \(v_{N} \) и постоянной величине воздействия других факторов с ее остаточным сроком службы \(T_{res} \) в этом режиме:

\[
T_{res} = R_{res} / v_{N}. \tag{2}
\]

\[
R_{res} = 1 - \int_{0}^{t_{p}} v(t) dt, \tag{3}
\]

где \(v \) – мгновенное значение скорости старения изоляции, а \(t_{p} \) – время работы.

Величина \(R_{res} \) пропорциональна неиспользованному сроку службы изоляции, измеряемому в именованных единицах времени. В начале срока эксплуатации двигатель \(T_{res} \) совпадает с \(T_{R} \).

Хотя температура обмотки является важнейшим фактором, определяющим долговечность изоляции, необходимо отметить существование и других факторов, воздействующих на состояние изоляции – вибраций, влажности, агрессивной среды, электрического поля [5, 7-10]. В существующих системах тепловой защиты, в том числе и использующих непосредственное измерение температуры обмотки, сложно обеспечить учет всего многообразия прочих воздействующих факторов. Поэтому представляет интерес получение таких способов контроля текущего состояния изоляции
обмоток, которые по некоторым измеряемым величинам позволили бы оценивать текущее состояние изоляции обмоток и прогнозировать его состояние.

Существуют работы, где предлагается подход к мониторингу состояния и определению остаточного ресурса электродвигателей на основе некоторых комплектных критериев [1, 11–13]. Во многих случаях такие решения требуют целого набора датчиков, а зачастую и сложного математического обеспечения. При этом в некоторых случаях, например в [11], при построении оценочного критерия не учитывается термическое воздействие на изоляцию обмотки машины. Кроме того, такие подходы, как правило, не в состоянии учесть влияние на деградационные процессы в изоляции обмоток работы ШИМ в системе ПЧ-АД и некоторые другие факторы.

Существует также большое количество работ, связанных с экспериментальной оценкой состояния изоляции обмоток электродвигателей. Для этой цели применяются различные методы, такие как измерение тангенса угла диэлектрических потерь, метод на основе частичных разрядов, на основе анализа переходных процессов при подаче импульсов напряжения на обмотку и т.д. Все эти методы имеют свои преимущества и недостатки.

Так, тангенс угла диэлектрических потерь позволяет судить о состоянии изоляции, однако этот показатель очень чувствителен к увлажнению изоляции, кроме того, недостатком этого подхода является сложность автоматизации процесса измерения.

Метод частичных разрядов дает возможность получить информацию о наличии различных дефектов в изоляции двигателя на ранней стадии их развития. Однако применение этого метода для низковольтных двигателей проблематично [14]. Кроме того, этот метод имеет низкую помехозащищенность и его сложно автоматизировать.

В ряде работ предлагается диагностирование изоляции обмоток двигателя на основе анализа параметров переходного процесса, возникающего при тестировании обмотки импульсом напряжения [1, 15–20]. Недостатком такого подхода связаны с необходимостью регистрации параметров переходных процессов, имеющих очень малую длительность. Так, в [16] в качестве интегрального параметра, характеризующего состояние изоляции обмоток статора, предлагается использовать отношение декремента затухания колебаний к периоду затухания переходного процесса, в [1] предлагается судить о состоянии изоляции по амплитудам первого и второго полупериодов и длительности первого и второго периодов колебаний. В [19, 20] предлагается индикатор состояния изоляции обмотки, основанный на анализе амплитудного спектра колебательной составляющей тока после подачи ступенчатого сигнала. При характерных для таких процессов частотах колебаний сигнала (порядка МГц) все эти подходы требуют оборудования, обеспечивающего весьма высокое разрешение по времени. Так, в [19] указывается, что частота измерений сигнала должна быть, по крайней мере, в 20 раз больше максимальной частоты, используемой для расчета индикатора состояния изоляции. Недостатком подобных методов также является проблема достоверного расчета таких показателей процесса, как декремент затухания колебаний и период,

построение амплитудного спектра сигналов в условиях помех. Здесь также возникают сложности и с задачей автоматизации процесса диагностики.

Изложенное выше позволяет сделать вывод об актуальности задачи поиска более простых методов диагностики изоляции обмоток, в том числе и с использованием тестирующих импульсов напряжения, которые бы предъявляли меньше требования к аппаратуру, математическим методам обработки сигнала и позволили бы процесс автоматизацию измерений. Одним из таких методов может быть метод на основе не единичного тестирующего импульса, а их последовательности, достаточно длинной для того, чтобы можно было говорить о некоторых средних или среднеквадратических значениях параметров процессов, которые можно было бы связать с состоянием изоляции обмоток и использовать для ее диагностики [21].

Связь емкостных токов утечки с состоянием изоляции обмотки

В экспериментальном исследовании, результаты которого изложены в [22] (K. Younsi, et al., USA, GE), показано, что величина емкостного тока утечки изоляции обмотки электродвигателя тесно связана с процессом старения изоляции. Это было установлено в ходе обстоятельного экспериментов по ускоренному старению изоляции обмотки статора асинхронного двигателя (480 В, 73,5 кВт, 1200 об/мин) с изоляцией обмотки статора класса F.

На рис. 1 показаны графики полного тока утечки (включающего емкостную и резистивную компоненты) по экспериментальным данным из [22] (здесь убран интервал времени, соответствующий приостановке эксперимента) и экспоненциальная аппроксимация огибающей этого графика. Уменьшение сопротивлением времени тока утечки связано здесь с тем, что при термическом старении изоляция происходит снижение емкостных свойств изоляции [23], что вызывает уменьшение емкостной компоненты тока утечки, составляющей здесь доминирующую часть полного тока. На рис. 1 четко прослеживается возможность описания временной зависимости графика тока утечки (Iт) по мере нарастания деградационных изменений в изоляции аппроксимирующем выражением

\[I_t = \Delta I_{y,\text{max}} e^{-\frac{t}{\tau_0}} + I_{y,0}. \]
Алгоритм мониторинга и прогнозирования при использовании емкостных токов утечки как диагностического признака

Зависимость (4) является своего рода моделью процесса старения изоляции, поэтому далее, для краткости, будем называть эту зависимость «моделирующей экспонентой». Выявленный характер зависимости тока утечки в процессе старения изоляции позволяет построить систему мониторинга состояния изоляции на основе контроля превышения измеренной величины \(I_t \) над некоторым уровнем \(I_{t,\lim} \). Снижение ниже которого свидетельствует об исчерпании ресурса изоляции. Проблема здесь заключается в силном защумлении полезного сигнала вследствие действия помех в информационных каналах и с влиянием на токи утечки параметров окружающей среды. Согласно экспериментальным данным [22], при этом утечка наступает спустя время, большее, чем 5-6 постоянных времени экспоненты в выравнении (1). К этому времени значение экспоненты становится весьма малым, что сужает проблему определения момента пересечения уровня \(I_{t,\lim} \) в условиях помех. Это хорошо прослеживается на рис. 2, где показан набор реализаций зашумленного сигнала \(I(t) \) с интервалом отсчетов \(\Delta t = 100 \) ч после фильтрации с использованием фильтра 1-го порядка с постоянной \(T_f = 4 \Delta t \). Здесь видно, что при разных реализациях зашумленного процесса кривая \(I(t) \) пересекает пороговый уровень в существенно разное время. Таким образом, фильтрация и сглаживание сигнала не позволяют надежно решить эту проблему, поэтому представляется целесообразным использовать подходы, связанные с идентификацией параметров моделирующей экспоненты \(I(t) \) для последующей оценки величины прогнозируемого времени пересечения порогового уровня \((t_{lim}) \). В этом случае появляется возможность прогнозирования остаточного ресурса, выраженного в единицах времени \((T_R) \), как разности между прогнозируемым временем \(t_{lim} \) и текущим моментом времени \(t \):

\[
T_R = t_{lim} - t,
\]

где под текущим временем подразумевается время наработки.

Из формулы (4) можно получить выражение для \(t_{lim} \):

\[
t_{lim} = \frac{1}{\alpha_y} \ln \frac{\Delta I_{y,\max}}{\Delta I_{y,\lim}},
\]

где \(\Delta I_{y,\max} = I_{y,\max} - I_0 \) – превышение над уровнем установившегося значения тока утечки.

Можно предложить следующий алгоритм работы системы прогнозирования состояния на основе идентификации параметров моделирующей экспоненты. Здесь будем предполагать, что значения нагружения двигателя, а также изменения параметров окружающей среды носят стационарный характер на интервалах, превышающих по длительности постоянную времени экспоненты (4). Алгоритм работает с накопленными значениями \(I_k = [I_1, I_2, \ldots, I_k] \) и \(t_k = [t_1, t_2, \ldots, t_k] \), где \(k \) – номер последнего измерения. Каждый раз после нового измерения \(I_k \) происходит запоминание очередной пары \(t_k \) и \(I_k \).

![Рис. 2. Набор реализаций зашумленного сигнала с фильтром 1-го порядка; 1 – моделирующая экспонента; 2 – уровень \(I_{t,\lim} \).](image)

Начало обработки зарегистрированных данных с целью идентификации параметров моделирующей экспоненты начинается не сразу после начала измерений, так как при ограничении количестве точек в условиях существенной случайной составляющей дестабилизирую определить параметры моделирующей экспоненты. Поэтому в начале работы алгоритма выполняется проверка – превышает ли время \(t_k \) некоторое начальное значение \(t_{lim,\min} \), где \(t_{lim,\min} \) – время наработки, после которого можно начать идентификацию параметров экспоненты. Рассчитать \(t_{lim,\min} \) может быть выполнено с использованием экспоненты, описывающей деградационные процессы в изоляции при допустимой для данного класса изоляции температуре. Полагаем, что исчерпание ресурса происходит, как следует из экспериментальных результатов [22], при \(t_k > (4...5)/\alpha_N \), где \(\alpha_N \) – степенной коэффициент экспоненты при работе с допустимой для данного класса изоляции температуре. Если рассчитать характеристики времена исчерпания ресурса \((T_R) \) по формуле (1), то, принимая эти времена за \(T_R = (4...5)/\alpha_N \), можно определить \(\alpha_N \) по выражению

\[
\alpha_N = (4...5)/T_R.
\]

В таблице приведены рассчитанные значения \(T_R \) и \(\alpha_N \) для разных классов изоляции.

<table>
<thead>
<tr>
<th>Класс изоляции</th>
<th>(T_R), час</th>
<th>(\alpha_N \times 10^2), час^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18583</td>
<td>2,15–2,69</td>
</tr>
<tr>
<td>E</td>
<td>21163</td>
<td>1,89–2,36</td>
</tr>
<tr>
<td>B</td>
<td>18215</td>
<td>2,20–2,74</td>
</tr>
<tr>
<td>F</td>
<td>21440</td>
<td>1,87–2,33</td>
</tr>
<tr>
<td>I</td>
<td>22382</td>
<td>1,79–2,00</td>
</tr>
</tbody>
</table>
После считывания массива исходных данных \((t_i, I_i)\) выполняется предфильтрация данных и проводится расчет среднего значения \(I_{\text{ср}(n)}\) за предшествующий период, что необходимо для выполнения далее одной из проверок.

На следующем этапе проводится идентификация параметров моделирующей экспоненты. При этом выполняются проверки:

а) должны выполняться условия \(\Delta I_{\text{max}}>0\), \(\alpha >0\) и \(I_0\) > 0, что следует из очевидных физических соображений (если не выполнено хотя бы одно условие – текущую точку игнорируем);

б) должно выполняться достаточное очевидное условие \(I_{\text{max}}+I_0 > I_{\text{ср}(n)}\).

После определения параметров моделирующей экспоненты выполняется расчет прогнозируемого времени исчерпания ресурса \(t_{\text{lim}}\) и проверка знака разности \(t_{\text{lim}}-t\), представляющей собой величину остаточного ресурса. При отрицательной величине данной разности выдается решение о том, что ресурс истекает.

Результаты моделирования

На рис. 3 показаны результаты моделирования работы рассмотренного алгоритма в Matlab/Simulink. Идентификация параметров моделирующей экспоненты проводилась с использованием МНК. По горизонтали на рис. 3 – время от начала эксплуатации. Пунктирными линиями показаны уровни, соответствующие идентичным значениям \(\Delta I_{\text{max}}, \alpha, I_0\) и соответствующим этим значениям расчетным величинам \(t_\text{lim}\). Моделировался работа алгоритма с интервалом измерений 100 ч без предфильтрации, при гауссовском законе распределения погрешности со средним квадратичным отклонением 20% от величин \(I_0\) по моделирующей экспоненте. Обозначено: 1 – \(\Delta I_{\text{lim}}=0,0067\Delta I_{\text{max}}\) (о); 2 – \(\Delta I_{\text{lim}}=0,0183\Delta I_{\text{max}}\) (д). На рис. 3 видно, что величины вычисленных параметров моделирующей экспоненты и \(t_{\text{lim}}\) по мере накопления зарегистрированных значений тока утечки, достаточно хорошо сходятся к истинным их величинам.

Заключение

1. Предложен подход к мониторингу и прогнозированию состояния изоляции обмотки электродвигателя на основе использования информации о емкостных токах утечки.
2. Описан алгоритм работы системы прогнозирования состояния изоляции с использованием информации о емкостных токах утечки на основе идентификации параметров моделирующей экспоненты.
3. Проведено моделирование предложенного алгоритма в Matlab/Simulink, подтверждившее его работоспособность.

Список литературы

1. Методы и приборы диагностирования изоляции асинхронных двигателей / Воробьев Н.П., Воробьева С.Н., Суханкин Г.В., Герцен Н.Т. // Ползуновский вестник. 2011. № 2/2. С. 261–269.
2. Пахомов А.И. Методы и средства диагностики изоляции асинхронных двигателей сельскохозяйственного производства на основе частичных разрядов: дис... д-ра техн. наук: 05.20.02. Краснодар, 2008. 347 с.
15. Гутов И.А. Прогнозирование состояния электродвигателей...
The article presents an approach to creating a system for estimating resource expenditure and predicting the induction motors windings insulation condition based on capacitive leakage currents. The approach is based on the measurement of capacitive leakage currents created by a continuous sequence of rectangular voltage pulses. A decrease in the magnitude of these currents indicates a decrease in the residual life of the winding insulation. Experiments show an exponential decrease in leakage currents due to the development of insulation degradation processes in the long term. It was proposed to estimate the residual resource value using a modeling exponent, whose parameters are determined in the current time mode using parameter identification methods such as the least squares method (OLS) or methods based on the Kalman algorithm. The advantage of the proposed method is the comparative simplicity of the technical means used and the ability to assess the residual life of the winding insulation relying only on the data experimentally obtained through measurement. The article describes the operation of the algorithm for the prediction of the insulation condition based on the parameters identification of the modeling exponent. The possibility of predicting the residual resource, expressed in units of time, as the difference between the predicted time of failure and the current point in time, where the current time here means the operating time is shown. The results of the proposed algorithm simulation with the identification of a modeling exponent based on OLS are given. The algorithm was simulated with a measurement interval of 100 hours with a Gaussian distribution law for the error of measured leakage currents with a standard deviation of 20%. It is shown that the values of the modeling exponent parameters agree quite well with the true values at this level of noise even without using prefiltration of the leakage current measured values sequence.

Keywords: induction motor, stator winding, winding insulation, residual life, leakage currents, diagnostics, insulation condition monitoring, insulation condition prediction, parameter identification, least squares method.

REFERENCES

ЧЕЛОВЕКО-МАШИННАЯ СИСТЕМА НАСЫПНОЙ ПЛОТНОСТИ ШИХТОВЫХ МАТЕРИАЛОВ ДУГОВОЙ СТАЛЕПЛАВИЛЬНОЙ ПЕЧИ: ФУНКЦИЯ ОБЪЕМНОЙ НАСЫПНОЙ ПЛОТНОСТИ И СЕМФОРНАЯ СИСТЕМА

Целью научного исследования является построение функции объёмной насыпной плотности материалов в рабочих пространствах металлургических агрегатов. В качестве объекта исследования выбрана крупнотоннажная дуговая сталеплавильная печь (180 т). В качестве предмета исследования используется имитационная модель процесса загрузки шихтовых материалов в дуговой сталеплавильной печи. Исследование проводилось на базе Магнитогорского государственного технического университета им Г.И. Носова. При исследовании применены методы системного анализа, методы причинно-следственного анализа и методы эмпирического исследования. В данной работе: описаны компоненты и взаимодействие комплекса методик для описания процесса перемещения фрагментов металлического лома между рабочими пространствами металлургических агрегатов; построена методика формирования функции объёмной насыпной плотности материалов в рабочих пространствах металлургических агрегатов; построена функциональная схема алгоритмического обеспечения семафорной системы модуля движения шихтовых материалов для отображения величины объёмной насыпной плотности фрагментов металлического лома на SCADA АСУТП плавки ДСП-180. Выполнение методики формирования функции объёмной насыпной плотности материалов позволяет определить значение объёмной насыпной плотности материалов в рабочих пространствах металлургических агрегатов и оценку наполненности объёма рабочего пространства металлургических агрегатов. Визуализация значения и оценки объёмной насыпной плотности шихтовых материалов в рабочих пространствах металлургических агрегатов позволяет оператору принимать решения о загружаемых шихтовых материалах. Результаты исследования предполагаются к использованию при разработке алгоритмического обеспечения человеко-машинационального модуля движения шихтовых материалов между рабочими объёмами металлургических агрегатов в условиях электросталеплавильного цеха для проведения вычислительных экспериментов.

Ключевые слова: дуговая сталеплавильная печь, насыпная плотность шихты, функция насыпной плотности, металлический лом, семафорная система, визуализация заполнения объёма.

ВВЕДЕНИЕ

Развитие современных информационно-телекоммуникационных технологий способствуют появлению новых тенденций в построении структуры человеко-машинациональных или эргономических систем для автоматизированного управления технологическими процессами и производством. Не является исключением и металлургическое производство, которое в настоящее время оснащается новым оборудованием. Требования потребителя к поставленному качеству готовой продукции заставляют совершенствовать технологии производства, включая и технологию производства процессов, начиная с самых ранних этапов подготовки сырья и получения полуфабриката. Учитывая множественность процесса получения металлургической продукции [1] и многообразие каждой стадии, появляется новый вызов в построении человеко-машинациональных систем, с помощью которых возможно выполнить интеллектуальную поддержку принятия решений для больших систем.

Один из сложных вопросов технологии выплавки стали в дуговой сталеплавильной печи является определение электрических режимов работы в зависимости от требований заказчика и свойств получающей конечной продукции [2, 3]. Основой для достижения этих требований является качество используемого сырья, и в частности, поступающих шихтовых материалов в дуговую сталеплавильную печь. В рамках проводимого исследования к параметрам качества шихтовых материалов относятся: химический состав металлического лома, фракционность металлического лома, структура шихтовых материалов. Фракционность металлического лома определяет насыпную плотность шихтовых материалов, загружаемых в рабочее пространство дуговой сталеплавильной печи в последствии выбор электрических режимов работы агрегата.

Вопросами наполнения рабочих пространств металлургических агрегатов шихтовых материалов занимаются российские и зарубежные ученые авторы. Авторы [4, 5] предлагают использование рационального соотношения загружаемых материалов, а именно изменение порядка формирования слоёв металлического лома в рабочем пространстве дуговой сталеплавильной печи. В работах [6-12] представлены технологии заполнения рабочих пространств металлургических агрегатов, адаптированные к конкретным конструкциям и условиям выплавки стали. В теоретических исследованиях [13-18] предлагаются упрощенные методики и способы определения насыпной плотности шихтовых материалов при условии их равномерного распределения по рабочему пространству агрегата. Однако при наличии в составе шихтовых материалов крупногабаритных кусковых фрагментов существует высокая вероятность образования эффекта «кострия», даже после процедуры утрамбовки лома поверхностью загруженной балки [19, 20].
Пилотажный эксперимент с использованием физической модели и теории подобия показал, что вероятность возникновения очагов «костеневания» в рабочих пространствах металлургических агрегатов:
- с шихтой мелких размеров невысока и составляет от 0 до 0,2%;
- с шихтой средних размеров составляет от 0,5 до 1%;
- с шихтой, включающей фрагменты негабаритных размеров, составляет более 1,14% [20].

Таким образом, в настоящее время остаются актуальными проблемы, снижающие эффективность управления технологическим процессом выплавки стали в дуговой сталеплавильной печи, такие как:
- отсутствие математических моделей, описывающих процесс движения шихтовых материалов между рабочими пространством специального оснащения и металлургических агрегатов (совок – бадья – рабочее пространство дуговой сталеплавильной печи);
- отсутствие моделей человечно-машины систем для интеллектуальной поддержки выбора электрического режима выплавки стали на стадиях подготовки и загрузки шихтовых материалов.

МЕТОДИКА ПОСТРОЕНИЯ ФУНКЦИИ ОБЪЕМНОЙ НАСЫЩЕННОЙ ПЛОТНОСТИ ШИХТОВЫХ МАТЕРИАЛОВ В РАБОЧИХ ПРОСТРАНСТВАХ МЕТАЛЛУРГИЧЕСКИХ АГРЕГАТОВ

Построение функции объемной насыщенной плотности материалов в рабочих пространствах металлургических агрегатов базируется на исследованиях технологического процесса движения шихтовых материалов между металлургическими агрегатами по инструкции [21] и результатах исследования модельных экспериментов [19, 20]. По результатам исследования построен комплекс методик для описания процесса перемещения фрагментов металлического лома между рабочими пространствами металлургических агрегатов (рис. 1). Комплекс включает две методики: методика имитационного моделирования перемещения материала между рабочими объемами и их наполнения; методика определения объемной насыпной плотности шихтовых материалов в рабочем дуговой сталеплавильной печи.

Методики основаны на процедурном принципе последовательного выполнения действий.

Выполнение первой методики из комплекса позволяет построить прямоугольную сеть (дискретность точек разбиения сети – 1 мм), на плоскости сечения в которой размещаются объекты из библиотеки фрагментов шихтовых материалов [20] (рис. 2).

На рис. 2 введены сокращения и обозначения: 0 и 1 – возможные значения ячейки, определяющие наличие элементов шихтовых материалов в ячейке, где 0 – элемент фрагмента отсутствует, 1 – элемент фрагмента присутствует; X, Y, Z – оси декартовой системы координат.

Рис. 1. Компоненты и взаимодействие методик для описания процесса перемещения фрагментов металлического лома между рабочими пространствами металлургических агрегатов
Рис. 2. Компоненты и взаимодействие методик для описания процесса перемещения фрагментов металлического лома между рабочими пространствами металлургических агрегатов

В рамках второй методики формируется функция объёмной насыщенной плотности фрагментов металлического лома в рабочем пространстве дуговой сталеплавильной печи, которая содержит следующие этапы:

1. Определить множество рабочих пространств металлургических агрегатов путём ввода переменной, характеризующей это множество

 \[E = \{0, 1, 2\}, \]

 (1)

где \(E \) – множество, характеризующее рабочие пространства металлургических агрегатов и специального оснащения; 0 – рабочее пространство оснащения - «совок»; 1 – рабочее пространство оснащения - «загрузочная бадья»; 2 – рабочее пространство металлургического агрегата - «дуговая сталеплавильная печь».

2. Определить рабочее пространство металлургических агрегатов из множества значений \(E \) по условиям:

 \[V_n = \begin{cases}
 V_0, & \text{если } E = 0; \\
 V_1, & \text{если } E = 1; \\
 V_2, & \text{если } E = 2.
 \end{cases} \]

(2)

где \(V_n \) – выбранный объём рабочего пространства металлургического агрегата, \(V_0 \) – объём рабочего пространства специального оснащения; \(V_1 \) – объём рабочего пространства специального оснащения – «совок»; \(V_2 \) – объём рабочего пространства металлургического агрегата – «дуговая сталеплавильная печь».

3. Определить объёмы рабочих пространств металлургических агрегатов и специального оснащения.

3.1. Определить объём рабочего пространства специального оснащения «совок»:

 \[V_s = (a_1 b_1 c_1) + (a_2 b_2 c_2), \]

(3)

где \(V_s \) – объём рабочего пространства специального оснащения «совок»; \(a_1 b_1 c_1 \) и \(a_2 b_2 c_2 \) – ребра параллелепипедов, из которых строится форма рабочего пространства специального оснащения «совок», мм.

3.2. Определить объём рабочего пространства специального оснащения «загрузочная бадья»:

 \[V_b = \left(\pi r_1^2 \cdot h_1 \right) + \left[\pi r_2^2 \left(R - \frac{1}{3} h_2 \right) \right], \]

(4)

где \(V_b \) – объём рабочего пространства специального оснащения «загрузочная бадья»; \(r_1 \) – радиус цилиндрической формы металлургического агрегата «загрузочная бадья», \(h_1 \) – высота цилиндрической формы специального оснащения «загрузочная бадья», \(r_2 \) – радиус шарообразной формы основания специального оснащения «загрузочная бадья», \(h_2 \) – высота шарообразного сегмента специального оснащения «загрузочная бадья», мм.

3.3. Определить объём рабочего пространства металлургического агрегата «дуговая сталеплавильная печь»:

 \[V_p = \left(\pi r_3^2 \cdot h_3 \right) + \left[\pi r_4^2 \left(R - \frac{1}{3} h_4 \right) \right], \]

(5)

где \(V_p \) – объём рабочего пространства металлургического агрегата «дуговая сталеплавильная печь»; \(r_3 \) – радиус цилиндрической формы металлургического агрегата «дуговая сталеплавильная печь»; \(h_3 \) – высота цилиндрической формы металлургического агрегата «дуговая сталеплавильная печь», \(h_4 \) – высота шарообразного сегмента металлургического агрегата «дуговая сталеплавильная печь», мм.

4. Определить принадлежность каждой точки прямоугольной сетки разбиения рабочего пространства металлургического агрегата, после размещения в ней объектов библиотеки фрагментов металлического лома:

 \[f(x, y, z) = \begin{cases}
 0, & \text{пустая точка}; \\
 1, & \text{заполненная точка}, \end{cases} \]

(6)

где \(x, y, z \) – координаты каждой точки по сетке разбиения; 0, 1 – значения принадлежности каждой точки прямоугольной сетки разбиения рабочего пространства металлургического агрегата или специального оснащения.

5. Найти значения функции объёмной насыщенной плотности материалов в рабочих пространствах металлургических агрегатов:

 \[\rho(x, y, z) = \begin{cases}
 \rho_0, & f(x, y, z) = 0; \\
 \rho_1, & f(x, y, z) = 1, \end{cases} \]

(7)

где \(\rho \) – функция объёмной насыщенной плотности материалов в рабочих пространствах; \(\rho_0 \) – значение функции объёмной насыщенной плотности, при наличии насыщенной плотности материала в рабочем пространстве; \(\rho_1 \) – условие функции объёмной насыщенной плотности, при наличии заполненности насыщенности.
6. Рассчитать общее количество заполненный точек прямоугольной сетки разбиения рабочего пространства:

\[V_s = \sum_{x=1}^{n_x} \sum_{y=1}^{n_y} \sum_{z=1}^{n_z} f(x, y, z), \]

(8)

где \(V_s \) – интегральная оценка наполненности объёма рабочего пространства, \(n_x, n_y, n_z \) – максимальные значения точек прямоугольной сетки разбиения рабочего пространства по осям \(x, y, z \), мм.

7. Оценить насыпную плотность объектов библиотеки фрагментов металлического лома, размещённых в рабочем пространстве металлического агрегата, на предмет соответствия допустимым значениям насыпной плотности:

\[\alpha V_m \leq V_s \leq \beta V_m, \]

(9)

где \(V_s \) – количество пустых точек прямоугольной сетки разбиения рабочего пространства металлического агрегата; \(\alpha, \beta \) – настроенные коэффициенты насыпной плотности фрагментов металлического лома, соответствующие минимальным и максимальным граничным, указанным в технологических инструкциях металлургических агрегатов.

8. Получить величину насыпной плотности фрагментов металлического лома, размещённых в рабочем пространстве:

\[A = 1 - \frac{V_m - V_s}{V_m}, \]

(10)

gде \(A \) – интегральная характеристика функции объёмной насыпной плотности.

Использование методики построения функции объёмной насыпной плотности материалов в рабочих пространствах металлургических агрегатов позволяет выполнить подготовку исходных данных по насыпной плотности фрагментов металлического лома, расположенных в рабочих пространствах металлургических агрегатов и специального оснащения для определения величины насыпной плотности фрагментов металлического лома, размещённых в рабочем пространстве металлического агрегата.

Исходные данные предназначены для дальнейшего использования в человеко-машинной системе при определении насыпной плотности шихтовых материалов дуговой сталеплавильной печи и отображении в SCADA АСУТП плаки для ДСП-180.

СЕМАФОРНАЯ СИСТЕМА МОДУЛЯ ДВИЖЕНИЯ ШИХТЫХ МАТЕРИАЛОВ ДЛЯ ОТОБРАЖЕНИЯ НА SCADA АСУТП ПЛАНКИ ДСП-180

Существующая SCADA система АСУТП плаки в условиях ЭСПЦ ПАО «ММК» построена на семафорном принципе индикации текущего состояния технологических агрегатов. Информация по состоянию агрегата формируется по событийной логике, представляющей собой последовательную цепочку событий, приводящую к выявлению нарушений технологических режимов. Анализ АСУТП Плаки ДСП-180 показал отсутствие изменений насыпной плотности и семафорной индикации значений насыпной плотности (рис. 3).

Проектируемое алгоритмическое обеспечение семафорной системы модуля движения шихтовых материалов предназначено для отображения величины насыпной плотности фрагментов металлического лома, размещенных в рабочем пространстве металлургического агрегата и сопровождающего специального оснащения. Система позволит оператору принимать решения о загружаемых шихтовых материалах. Структура алгоритмического обеспечения семафорной системы модуля движения шихтовых материалов представлена на рис. 4. В таблице приведено описание блоков, представленных на рис. 4.

Рис. 3. Диаграмма влияния на показатели работы ДСП-180
Рис. 4. Функциональная схема алгоритмического обеспечения семафорной системы модуля движения шихтовых материалов для отображения величины насыпной плотности фрагментов металлургического лома на SCADA АСУТП планировки ДСП-180

Описание последовательных шагов алгоритмического обеспечения семафорной системы

<table>
<thead>
<tr>
<th>Номер шага</th>
<th>Наименование шага</th>
<th>Описание шага</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Получить исходные данные</td>
<td>Блок получения значения величины насыпной плотности, рассчитанного по формулам 9 и 10</td>
</tr>
<tr>
<td>2</td>
<td>Определить цветовую гамму величины насыпной плотности</td>
<td>Блок определения цветовой гаммы по величине насыпной плотности. Цветовая гамма величины насыпной плотности определяется по формуле (11).</td>
</tr>
<tr>
<td>3</td>
<td>Визуализировать величину насыпной плотности</td>
<td>Блок визуализации значения насыпной плотности с семафорной индикацией</td>
</tr>
</tbody>
</table>

Процедура определения цветовой гаммы величины насыпной плотности (11) основана на методике определения выхода значений за нормальные границы:

\[
C = \begin{cases}
0, & A \in [\alpha, \beta], \text{ зеленый и } Hi \text{ или } Lo; \\
1, & A < \alpha, \text{ красный и } LoLo; \\
2, & \beta > A, \text{ красный и } HiHi,
\end{cases} \tag{11}
\]

где \(C \) – переменная, характеризующая цветовую гамму величины насыпной плотности; \(HiHi \) – максимально допустимое значение величины насыпной плотности; \(LoLo \) – минимально допустимое значение величины насыпной плотности; \(Hi \) – максимально допустимый рабочий предел величины насыпной плотности; \(Lo \) – минимально допустимый рабочий предел величины насыпной плотности.

Схема цветового решения визуализации величины насыпной плотности представлена на рис. 5.

На рис. 5 введены сокращения и обозначения: \(HiHi \) – максимально допустимые величины насыпной плотности; \(LoLo \) – минимально допустимые величины насыпной плотности; \(Hi \) – максимально допустимый рабочий предел величины насыпной плотности; \(Lo \) – минимально допустимый рабочий предел величины насыпной плотности; \(n \) – предельные значения величины насыпной плотности; \(\alpha, \beta \) – настроенные коэффициенты насыпной плотности фрагментов металлургического лома, соответствующие минимальным и максимальным границам, указанным в технологических инструкциях металлургических агрегатов.

Согласно исследованиям, в АСУТП Планировка ДСП-180 используется методика определения выхода значений за нормальные границы, поэтому принято решение использовать этот подход для семафорной системы модуля системы модуля движения шихтовых материалов. Экземпляр главного окна модуля движения шихтовых материалов с обозначенной системой представлен на рис. 6.

На рис. 6 введены сокращения и обозначения: \(\beta \) – загрузочная байда; \(\alpha \) – стальной загрузочный пульт; \(\rho \) – насычная плотность; \(\alpha, \beta \) – настроенные коэффициенты насыпной плотности фрагментов металлургического лома, соответствующие минимальным и максимальным границам, указанным в технологических инструкциях металлургических агрегатов.
Выводы

1. Анализ существующих исследований в области интеллектуализации принятия решений при оценке насыпной плотности материалов показал наличие упрощенных методик, которые не учитывают флюктуации плотности наполнения рабочего пространства агрегатов и специфического оснащения.

2. На основе анализа процесса движения шихтовых материалов между рабочими пространствами металлургических агрегатов и специфического оснащения создано методика построения функции объёмной насыпной плотности материалов в рабочих пространствах металлургических агрегатов и определения интегральной оценки для использования в схематической визуализации в рамках АСУ ТП дуговой сталеплавильной печи.

3. Результаты исследования предназначены при построении моделей человеко-машинных систем для интеллектуальной поддержки выбора электрического режима выплавки стали на стадиях подготовки и загрузки шихтовых материалов.

Список литературы

1. Логунова О.С. Технология исследования информационных потоков на металлургическом предприятии // Информационные технологии в проектировании и производстве. 2008. № 3. С. 32-36.

2. Николаев А.А. Разработка усовершенствованной методики выбора мощности статического тиристорного компенсатора дуговой сталеплавильной печи // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2017. Т. 15. № 3. С. 74-94.

7. Пат. 2552805 Российская Федерация, МПК C21C5/52. Способ выплавки стали в дуговой сталеплавильной печи и устройство для его осуществления / Сосонки О.М., Герцык С.И., Шишков М.В.; заявитель ФГБОУ ВПО «МГВМИ»; заявл. 23.05.2011; опубл. 10.04.2013.

15. Bulk and Tapped Density [Электронный ресурс]. Analyses
Method of Metal Scrap Fragments Function Construction of the Poured Bulk Density in an Electric Arc Furnace

Vyacheslav A. Oshurkov
Postgraduate Student, Computer Engineering and Software Engineering Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: oshurkov92@mail.ru. ORCID: https://orcid.org/0000-0002-9529-646X

Lyudmila G. Egorova
Ph.D. (Engineering), Associate Professor, Computer Engineering and Software Engineering Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: egorov-lyudmila@yandex.ru. ORCID: https://orcid.org/0000-0002-8763-9653.

Anatoly V. Lednov
Ph.D. (Engineering), Associate Professor, Computer Engineering and Software Engineering Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: vt-pm@magtu.ru. ORCID: https://orcid.org/0000-0001-7614-0534.

Ilya D. Antipanov
Student, Computer Engineering and Software Engineering Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: ilyaantipanov@mail.ru.

The task of this work is to form the function of the poured bulk density of metal scrap fragments in melting facilities workspace. The object of research is the electric arc furnace (EAF). The subject of research is simulation process modeling of material charging into the electric arc furnace. The research was carried out in laboratory of Nosov Magnitogorsk State Technical University and Magnitogorsk Iron and Steel Works. The methods of systems analysis, cause-and-effect analytic and empirical investigation were applied. In this paper, the description of the group the techniques of metal scrap fragments function construction of the poured bulk density in melting facilities workspace were applied; the description of the technique of the simulation process modeling of material charging technique; the description of metal scrap fragments function construction of the poured bulk density in the electric arc furnace; the description of the algorithm of mechanically worked semaphore signaling to visualize the poured bulk density of metal scrap fragments in melting facilities workspace on the SCADA system at MMK arc-furnace shop. The results of function construction of metal scrap fragments poured bulk density in melting facilities workspace (the bulk density value and properties of metal scrap fragments of melting facilities workspaces) are supposed to be used to create the metal scrap flow simulation modeling system. The metal scrap flow simulation modeling system will help decision making of the scrap fragments dimensions in electric arc furnace.

Keywords: poured bulk density, metal scrap, electric arc furnace, modeling technique, melting facilities, the poured bulk density of metal scrap.

REFERENCES
1. Logunova O.S. Technology of data flow research at a metallurgical plant. Informatsionnye tehnologii v proektirovani i proizvodstv [Information technology in design and manufacture]. 2008, no.3, pp. 32-36. (In Russian)
СИСТЕМЫ ВИБРОЗАЩИТЫ, ВИБРОКОНТРОЛЯ И ВИБРОДИАГНОСТИКИ ПРОМЫШЛЕННОГО ОБОРУДОВАНИЯ

Работа посвящена обзору основных технических решений по разработке мобильных и стационарных систем вибrozащиты, виброконтроля и вибродиагностики промышленного оборудования в общем и в характере вибрации, реализуемых компанией ЗАО «Консом СКС». Проведен анализ разработанных и известных в литературе автоматизированных систем диагностики технического состояния электродвигателей, их опорных подшипников, а также промышленных агрегатов, в том числе систем, построенных по принципу анализа вибрации контролируемого механизма. Показано, что при возникновении и развитии дефекта вибрационная картина, наблюдаемая на элементе агрегата, содержащего дефект, изменяется. При этом меняется как общий уровень вибрации, так и амплитуда вибрации на определенных частотах, характерных для конкретного дефекта оборудования. Эти частоты определяются конструктивной, геометрическими и электрическими параметрами объекта. На мониторинге и анализе таких характерных частот основаны автоматизированные системы вибрационной диагностики, разрабатываемые компанией ЗАО «Консом СКС». Системы же виброзащиты и виброконтроля основаны на мониторинге общего уровня вибрации оборудования. Автоматизированные системы вибродиагностики являются наивысшей ступенью развития систем мониторинга технического состояния технологического оборудования. Такие системы могут диагностировать дефекты подшипников качения или скольжения, электродвигателей постоянного или переменного тока, редукторов, соединительных муфт, валопроводов и других агрегатов. В работе также приведен обзор аппаратных средств, на основе которых возможно гибкое построение автоматизированной системы виброзащиты, виброконтроля или вибродиагностики в зависимости от требований к самой системе и к контролируемому объекту.

Ключевые слова: виброзащита, виброконтроль, вибродиагностика, подшипник, электрический двигатель, мониторинг, акселерометр, умный датчик, световая колонна, направленный микрофон, вибрация, спектральный анализ.

ВВЕДЕНИЕ

Одним из приоритетных направлений компании ЗАО «Консом СКС» является диагностика технического состояния промышленного оборудования, включающего подшипники качения и скольжения, электродвигатели постоянного и переменного тока, редукторы, соединительные муфты, валопроводы. В технической литературе описано множество систем мониторинга и диагностики технического состояния технологических агрегатов [1-14]. Дефекты, возникающие в процессе работы промышленного оборудования, возможно диагностировать по величине и характеру вибрации. Любое промышленное оборудование, даже находящееся в нормальном рабочем состоянии, подвержено вибрации. При возникновении и развитии дефекта вибрационная картина, наблюдаемая на элементе агрегата, содержащего очаг дефекта, изменяется. При этом меняется как общий уровень вибрации, так и амплитуда вибрации на определенных частотах, характерных для конкретного дефекта оборудования. На мониторинге общего уровня вибрации и характерных частот и основаны методики виброзащиты, виброконтроля и вибродиагностики, разработанные специалистами компании ЗАО «Консом СКС» [15].

ВИБРОЗАЩИТА

Методика защиты оборудования при превышении на нем общего уровня вибрации больше определенного значения предполагает отключение оборудования в автоматическом режиме с целью предотвращения риска аварии (рис. 1). На невращающихся частях агрегата (на подшипниках) устанавливаются датчики вибрации (акселерометры), которые подключены к электронному диагностическому прибору, который при увеличении вибрации больше допустимого уровня производит защитное отключение электродвигателя агрегата от сети питания.

В качестве характеристики общего уровня вибрации агрегата может быть использовано среднеквадратичное значение виброускорения, виброскорости или виброперемещения [16]. Это связано с тем, что среднеквадратичное значение любой из этих трех вибрационных величин характеризует энергию вибрации. Иными словами, среднеквадратичное значение виброскопического параметра прямо пропорционально разрушающей силе вибрации оборудования. Соответственно по увеличению среднеквадратического значения вибрации можно спрогнозировать и предотвратить поломку оборудования своевременным его отключением. Однако после остановки агрегата обнаружить причину и место возникновения дефекта возможно только традиционным способом – разобрать агрегат и визуально найти элемент оборудования с дефектом. Это является основным ограничением как виброзащиты, так и виброконтроля, определяющим область применения данных методик на оборудовании не слишком критичном к отключению, например, в связи с наличием резервного агрегата, включаемого на время ремонта основного.
Рис. 1. Структурная схема автоматизированной системы виброзащиты

Для мониторинга общего уровня вибрации в равной степени могут быть использованы среднеквадратичное значение виброускорения, виброскорость, а также виброускорение. Однако в ГОСТ [17] регламентируется только среднеквадратичное значение виброскорости.

Поэтому при построении автоматизированных систем виброзащиты и виброконтроля используются именно значение виброскорости.

Кроме того, при появлении и развитии дефекта в оборудовании (например, дефекты подшипников качения или скольжения) температура узла, в котором обработался дефект, начинает расти. Поэтому в дополнение к датчикам вибрации на подшипниковые опоры необходимо также устанавливать датчики температуры для увеличения информативности данных.

ВИБРОКОНТРОЛЬ

Так же как и в системе виброзащиты, автоматизированные системы виброконтроля, разрабатываемые ЗАО «Консом СКС», используют регламентированные ГОСТ среднеквадратичные значения виброскорости для мониторинга и контроля технического состояния оборудования. Однако здесь, в отличие от систем виброзащиты, данные о вибрации и температуре подшипников и других узлов и агрегатов, на которых установлены датчики вибрации (акселерометры), выводятся в виде мнемосхемы оператору, осуществляющему мониторинг технологического процесса (рис. 2).

На мнемосхеме параметры вибрации и температуры отображаются по принципу светофора:
- зеленый цвет означает нормальный режим функционирования оборудования;
- желтый цвет означает «Предупреждение»;
- красный цвет означает «Опасность», что говорит о критическом состоянии оборудования и требует принятия соответствующих мер.

Рис. 2. Мнемосхема автоматизированной системы виброконтроля дымососов, установленных на аспирации горно-обогатительного предприятия

При переключении на мнемосхеме индикаторов с зеленого на желтый или красный ответственный за эксплуатацию оборудования принимает решение о необходимости и целесообразности его остановки.

Альтернативным решением вывода информации о вибрационном состоянии оборудования является использование вместо мнемосхемы светодиодной световой колонны DV1510 производства компании «fit electronics», внешний вид которой приведен на рис. 3. Световая колонна состоит из пяти сегментов, каждый из которых настраивается по отдельности и может загораться одним из семи основных цветов. Таким образом для небольших объектов возможно настроить до пяти точек контроля на одну лампу, светящихся также по принципу светофора [18].

Для низковольтных асинхронных электродвигателей предлагается решение, основываясь на использовании малогабаритного беспроводного умного датчика АВВ (рис. 4) [19].

Основные преимущества интеллектуального датчика заключаются в том, что он автономно осуществляет контроль за состоянием электродвигателя; позволяет возможность двустороннего обмена данными, самодиагностики, калибровки; имеет встроенный элемент питания, рассчитанный на срок эксплуатации, равный пяти годам; обмен данными осуществляется по беспроводному протоколу Bluetooth.

Датчик является миниатюрным и имеет габариты 90х55х12 мм. Он устанавливается на охлаждающие ребра электродвигателя и конфигурируется со смартфона или планшета. Данный датчик также обладает защитой от использования неавторизованными пользователями. Датчик имеет три встроенных акселерометра, расположенных ортогонально друг к другу, и термометр. Анализ данных, полученных с умного датчика, происходит с использованием облачных технологий. Информация шифруется и затем передается на защищенный сервер в облако через смартфон или планшет. Работа сервера полностью соответствует политике компьютерной безопасности.

Информация обрабатывается на сервере и в любой момент может быть получена посредством смартфона, планшета или рабочего компьютера любым пользователем, имеющим разрешенный доступ к этой информации. Рассматриваемый интеллектуальный датчик является автономным. Он может быть установлен на ребра охлаждения корпуса электродвигателя без непосредственного подключения к нему.
посредством Интернета к облаку. Информация о состоянии электродвигателя имеет вид, показанный на рис. 5. Диагностическая информация также может быть представлена в виде тренда, как показано на рис. 6.

Еще одним способом вибрационного контроля является использование направленного микрофона USB Noise Meter компании Spl-Lab, внешний вид которого показан на рис. 7 [20].

Направленный микрофон (шумомер) USB Noise Meter предназначен для измерения уровня шума, уровня звукового давления и амплитудно-частотной характеристики с повышенной точностью на всем слышимом диапазоне от 20 Гц до 20 кГц. Источником измеряемого сигнала могут быть как промышленное оборудование, так и акустические системы. Шумомер имеет широкий динамический диапазон измеряемого сигнала в 70 дБ и высокий предельный уровень звукового давления в 150 дБ. Измеряемый сигнал оцифровывается внутри прибора и передается через USB-порт на персональный компьютер, планшет или телефон с операционной системой Android в цифровом виде.

На основе такого направленного микрофона может быть изготовлена стационарная или переносная система виброконтроля. На рис. 8 приведен снимок экрана специализированного программного обеспечения Measuring Center, поставляемого вместе с микрофоном. Программное обеспечение Measuring Center представляет из себя многофункциональный измерительный центр для спектрального анализа звука.

По умолчанию датчик осуществляет измерения каждый час. При необходимости интервал измерений можно настроить. Датчик имеет встроенную память, рассчитанную на хранение измерений за один месяц, при условии выполнения измерений каждый час. Таким образом, один раз в месяц обслуживающий персонал должен сделать обход всех двигателей, на которых установлены интеллектуальные датчики, имея при себе смартфон или планшет с необходимым программным обеспечением. При этом данные с датчика передаются на облачный сервер, где происходит их обработка и анализ.

Интеллектуальный датчик выдает данные о таких параметрах электродвигателя, как:
- температура корпуса электродвигателя;
- индикация состояния подшипников;
- вибрация (общий уровень, мм/с).

Эти данные отображаются на экране смартфона, собирающего информацию с датчика, или смартфона, планшета или рабочего компьютера, подключенного

Рис. 3. Внешний вид 5-сегментной световой колонны

Рис. 4. Использование умного датчика АВВ для мониторинга состояния асинхронного электродвигателя

Рис. 5. Диагностическая информация, отображаемая на экране смартфона

Рис. 6. Тренд вибрации и температуры корпуса двигателя
Вкладка «просмотр» событий предоставляет диагностическую информацию о дефектах оборудования в виде таблицы под названием «Журнал событий». Желтая строка в таблице означает «Предупреждение», красная строка означает – «Опасность», что говорит о критическом состоянии оборудования и требует принятия соответствующих мер. Система, в зависимости от оборудования, на котором она установлена, может быть настроена на распознавание необходимых типов дефектов, полный перечень которых приведен в таблице.

Типы дефектов и соответствующие им наименования дефектов оборудования

<table>
<thead>
<tr>
<th>Тип дефекта (в зависимости от элемента оборудования)</th>
<th>Наименования дефекта</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Дефект подшипника качения</td>
<td>1. Перекос наружного кольца при посадке</td>
</tr>
<tr>
<td></td>
<td>2. Неоднородный радиальный натяг</td>
</tr>
<tr>
<td></td>
<td>3. Прокалывание в посадочном месте</td>
</tr>
<tr>
<td></td>
<td>4. Освобождение крепления подшипника</td>
</tr>
<tr>
<td></td>
<td>5. Задевания в подшипнике и уплотнениях</td>
</tr>
<tr>
<td></td>
<td>6. Обкакивание наружного кольца</td>
</tr>
<tr>
<td></td>
<td>7. Проблемы смазки</td>
</tr>
<tr>
<td></td>
<td>8. Увеличенные зазоры в подшипнике</td>
</tr>
<tr>
<td></td>
<td>9. Износ поверхности наружного кольца</td>
</tr>
<tr>
<td></td>
<td>10. Износ поверхности тела качения</td>
</tr>
<tr>
<td></td>
<td>11. Износ поверхности внутреннего кольца</td>
</tr>
<tr>
<td></td>
<td>12. Дефект группы поверхностей трения</td>
</tr>
<tr>
<td></td>
<td>13. Раковины (сколы) на наружном кольце</td>
</tr>
<tr>
<td></td>
<td>14. Раковины (сколы) на внутреннем кольце</td>
</tr>
<tr>
<td></td>
<td>15. Раковины (сколы) на телах качения</td>
</tr>
<tr>
<td></td>
<td>16. Дефект сепаратора</td>
</tr>
<tr>
<td>2. Дефект подшипника скольжения</td>
<td>1. Увеличенный зазор в подшипнике</td>
</tr>
<tr>
<td></td>
<td>2. Дефект шееки вала</td>
</tr>
<tr>
<td></td>
<td>3. Дефект вкладышей</td>
</tr>
<tr>
<td></td>
<td>4. Дефект установки вкладышей</td>
</tr>
<tr>
<td></td>
<td>5. Эллипсность шееки вала</td>
</tr>
<tr>
<td></td>
<td>6. Вибрации масляного клина</td>
</tr>
<tr>
<td>3. Дефект редуктора</td>
<td>1. Дефект зубообрачивания входного вала</td>
</tr>
<tr>
<td></td>
<td>2. Дефект зубообтачивания выходного вала</td>
</tr>
<tr>
<td></td>
<td>3. Износ зубчатой папы входного \n</td>
</tr>
<tr>
<td></td>
<td>5. Экспертиза шестерни входного вала</td>
</tr>
<tr>
<td></td>
<td>6. Экспертиза шестерни выходного вала</td>
</tr>
<tr>
<td></td>
<td>7. Расседление редуктора</td>
</tr>
<tr>
<td></td>
<td>8. Гребной (сломанный зуб) \n</td>
</tr>
<tr>
<td></td>
<td>5. Дисбаланс и дефекты лопаток \n</td>
</tr>
<tr>
<td></td>
<td>1. Ошибочный баланс</td>
</tr>
<tr>
<td></td>
<td>2. Осьная несоосность сочлененных валов</td>
</tr>
<tr>
<td></td>
<td>3. Угловая несоосность сочлененных валов</td>
</tr>
<tr>
<td></td>
<td>4. Дисбаланс и дефекты лопаток вентиляторов</td>
</tr>
<tr>
<td></td>
<td>5. Дисбаланс к фундаменту</td>
</tr>
<tr>
<td></td>
<td>6. Дефект крепления к фундаменту</td>
</tr>
<tr>
<td></td>
<td>1. Дефект статора асинхронного/синхронного двигателя</td>
</tr>
<tr>
<td></td>
<td>2. Дефект ротора асинхронного двигателя \n</td>
</tr>
<tr>
<td></td>
<td>6. Дефект электродвигателей</td>
</tr>
</tbody>
</table>

Рис. 7. Внешний вид направленного микрофона Spl-Lab USB Noise Meter

Рис. 8. Программа Measuring Center для работы с микрофоном Spl-Lab USB Noise Meter

ВИБРОДИАГНОСТИКА

Автоматизированная система вибродиагностики является наиболее развитым и сложным методом мониторинга и диагностики дефектов промышленного оборудования по его вибрации. В основе такой системы лежит одновременный анализ временных сигналов и спектров вибрации. Анализ производится в автоматическом режиме на основании измерений, записываемых, как правило, один раз в сутки и сохраняемых в базе данных.

В качестве аппаратных средств для стационарной автоматизированной системы вибродиагностики, разработанной специалистами ЗАО «Консом СКС», используются акселерометры VSA001 производства ifm electronics, которые подключаются к электронным диагностическим приборам VSE002 также производства ifm electronics (см. рис. 1). Измеряемые данные передаются на сервер. Визуализация диагностических данных осуществляется посредством специализированного программного обеспечения «Эверест», которое позволяет просматривать данные удалено с помощью интернет-браузера.

Основной страницей специализированного программного обеспечения «Эверест», предоставляющей пользователю диагностическую информацию об объекте мониторинга, является страница «Аналитика», внешний вид которой приведен на рис. 9.

Страница «Аналитика» разделена на четыре колонки:
- Просмотр событий.
- Тренд дефектов.
- Пик-фактор.
- Орбита/Зазор.

Рис. 9. Основная страница автоматизированной системы вибродиагностики
Автоматизированная система вибродиагностики позволяет также строить тренд выбранного дефекта оборудования, график пик-фактора, график орбиты вала (в случае подшипника скольжения), измерять радиальный зазор в подшипнике (в случае подшипника качения), а также просматривать любые сигналы, как временные, так и спектры (прямой спектр и спектр огибающей), в режиме online в широком диапазоне частот. Кроме того, система позволяет делать необходимые измерения вручную, сохранять их и удалять. Все предоставляемые системой функции делают ее мощным и гибким средством вибрационной диагностики в руках специалиста.

ЗАКЛЮЧЕНИЕ

В статье рассмотрены основные типы систем оценки технического состояния оборудования по его вибрационной карте. Показано, что при возникновении и развитии дефектов в оборудовании, будут толчоки, качение или скольжение, электродвигатели постоянного или переменного тока, редукторы, соединительные муфты, валопроводы, вибрационная картина агрегата или узла изменяется. Поэтому принцип построения автоматизированных систем виброанализа, виброконтроля и вибродиагностики основан на регистрации изменений в вибрационной картине, будь то увеличение среднеквадратичного значения вибрации или увеличение вибрации на определенных частотах, характерных для различных дефектов оборудования. В работе приведен обзор аппаратных средств, на основе которых возможно гибкое построение автоматизированной системы виброанализа, виброконтроля или вибродиагностики в зависимости от требований к самой системе или контролируемому объекту.

СПИСОК ЛИТЕРАТУРЫ

4. Орлов А.В. Вибрация в радиальном роликоподшипнике, вызываемая износом // Проблемы машиностроения и надежности машин. 2013. № 4. С. 63-69.
5. Стефанов П.И., Лагуткин С.В., Никитин Ю.Р. Компактная токовая и вибродиагностика электромеханических систем // Интеллектуальные системы в производстве. 2013. № 2 (22). С. 160-165.
18. Operating instructions. 5-segment signal lamp DV15x0, DV25x0, 2018. 22 p.

Поступила в редакцию 16 января 2019 г.
VIBRATION PROTECTION, CONTROL AND ANALYSIS SYSTEMS FOR INDUSTRIAL APPLICATION

Evgeniy N. Ishmetiev
D.Sc. (Engineering), Director of Strategic Development, CJSC “KonsOM SKS”, Magnitogorsk, Russia. E-mail: eni@konsom.ru.

Dmitry V. Chistyakov
Ph.D. (Social Sciences), Executive Director, CJSC “KonsOM SKS”, Magnitogorsk, Russia. E-mail: dvc@konsom.ru.

Aleksandr N. Panov
Ph.D. (Engineering), Associate Professor, Head of the Department of Innovation, CJSC “KonsOM SKS”, Magnitogorsk, Russia. E-mail: panov.a@konsom.ru.

Evgeniy E. Bodrov
Ph.D. (Engineering), Associate Professor of the Electronics and Microelectronics Department, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia. E-mail: fortheartist@mail.ru. ORCID: https://orcid.org/0000-0002-7316-8213.

Mikhail Vrabel
Sales Director, “IFM-electronics”, Moscow, Russia. E-mail: michal.vrabel@ifm.com.

This paper describes basic CJSC “Konsom SKS” technical solutions overview for industrial equipment vibration protection, control and analysis systems, which can be mobile or stationary, and measure object vibration to determine its condition. The research group carried out analysis of known similar systems for diagnostics of electric motors, bearings and other units including those systems that use mechanism vibration analysis. It was shown that when the defect occurs in some part of the equipment, the vibration pattern there is changed. And not only overall vibration increases but also the vibration on specific frequencies is characteristic for a particular defect. Those frequencies depend on geometric and electric parameters of the mechanism. The automated vibration analysis systems developed by CJSC “Konsom SKS” are based on monitoring and analysis of those frequencies. On the other hand, vibration protection and vibration control systems are based on monitoring of the mechanism overall vibration. The automated vibration analysis systems are high end monitoring systems. These systems can diagnose defects in a roller or a sliding bearing, an AC or DC electric motor, gearbox, coupling, shaft etc. The paper also shows an overview of firmware that could be used interchangeably in vibration protection, vibration control and vibration analysis systems depending on the application.

Keywords: vibration protection, vibration control, vibration analysis, bearing, electric motor, monitoring, accelerometer, smart sensor, signal lamp, noise meter, vibration, spectral analysis.

REFERENCES

18. Operating instructions. 5-segment signal lamp DV15x0, DV25x0, 2018. 22 p.

Абдуллаев Ильдар Равильевич – старший преподаватель, кафедра электроэнергетики и электротехники, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: leggyild@mail.ru. ORCID: https://orcid.org/0000-0003-2748-6533.

Абдуллаева Рауза Рашидовна – канд. пед. наук, доцент, кафедра электроэнергетики и электротехники, факультет металлургических технологий, Новотроицкий филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский технологический университет МИСиС», г. Новотроицк, Россия.

Антипов Илья Дмитриевич – студент, кафедра вычислительной техники и программирования, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: ilyanantipanov@mail.ru.

Богданов Дмитрий Юрьевич – ассистент, кафедра электроэнергетики и электротехники, Южно-Российский государственный политехнический университет (НИИ) имени М.И. Платова, г. Новочеркасск, Россия. E-mail: Bogdanov_dmit@mail.ru. ORCID: https://orcid.org/0000-0002-7851-6045.

Бойков Андрей Игоревич – ассистент, кафедра электроэнергетики и электротехники, факультет автоматизации и информатики, Липецкий государственный технический университет, г. Липецк, Россия. E-mail: aboikov2013@gmail.com. ORCID: https://orcid.org/0000-0002-0032-0683.

Бодров Евгений Евдокимович – канд. техн. наук, доцент, кафедра электроники и микроэлектроники, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: fortheartist@mail.ru. ORCID: https://orcid.org/0000-0002-7316-8213.

Врабел Михаил – директор по продажам, «ИФМ-электроник», г. Москва, Россия. E-mail: michal.vrabel@ifm.com.

Дубина Ирина Алексеевна – старший преподаватель, кафедра электроэнергоснабжения промышленных предприятий, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия.

Егорова Людмила Геннадьевна – канд. техн. наук, доцент, кафедра вычислительной техники и программирования, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: egorov-lyudmil@yandex.ru. ORCID: https://orcid.org/0000-0002-8763-9653.

Еремлеев Артем Игоревич – аспирант, кафедра электрооборудования, электропривода и автоматики, Нижегородский государственный технический университет им. Р.Е. Алексеева, г. Нижний Новгород, Россия. E-mail: acidwolfvx@rambler.ru.

Зюзов Анатолий Михайлович – д-р техн. наук, профессор, кафедра электропривода и автоматизации промышленных установок, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия. E-mail: a.m.zyuzev@urfu.ru. ORCID: https://orcid.org/0000-0002-2233-2730.

Ирихов Александр Сергеевич – студент, кафедра электроэнергоснабжения промышленных предприятий, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: irihovalexandr@gmail.com.

Ниметьев Евгений Николаевич – д-р техн. наук, директор по стратегическому развитию, ЗАО «Консом СКС», г. Магнитогорск, Россия. E-mail: eni@konsom.ru.

Косматьов Валерий Иванович – канд. техн. наук, профессор, кафедра автоматизированного электропривода и макетоинженерии, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия.

Кравченко Олег Александрович – д-р техн. наук, доцент, заведующий кафедрой, кафедра электроэнергоснабжения и электропривода, Южно-Российский государственный политехнический университет (НИИ) имени М.И. Платова, г. Новочеркасск, Россия. E-mail: mvk346428@gmail.com. ORCID: https://orcid.org/0000-0002-2974-448X.

Корнилов Геннадий Петрович – д-р техн. наук, профессор, заведующий кафедрой, кафедра электроэнергоснабжения промышленных предприятий, институт энергетики и автоматизированных систем, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия.

Ласточкин Денис Владимирович – аспирант, кафедра электроэнергетики, факультет автоматизации и информатики, Липецкий государственный технический университет, г. Липецк, Россия. E-mail: kafEp@stu.lipetsk.ru.

Леднев Анатолий Викторович – канд. техн. наук, доцент, кафедра вычислительной техники и программирования, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: vt-pm@magtu.ru. ORCID: https://orcid.org/0000-0001-7614-0534.

Маклаakov Александр Сергеевич – канд. техн. наук, доцент, кафедра автоматики и макетоинженерии, Южно-Уральский государственный университет (НУУ), г. Челябинск, Россия. E-mail: maklakov.work@gmail.com.

Метельков Владимир Павлович – канд. техн. наук, доцент, кафедра электропривода и автоматизации промышленных установок, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия. E-mail: v.p.metelkov@urfu.ru. ORCID: https://orcid.org/0000-0001-5640-1637.
Мещеряков Виктор Николаевич – д-р техн. наук, профессор, заведующий кафедрой, кафедра электрофизики, факультет автоматизации и информатики, Липецкий государственный технический университет, г. Липецк, Россия. E-mail: mesherek@stu.lipetsk.ru. ORCID: https://orcid.org/0000-0003-0984-5133.

Ошурков Вячеслав Александрович – аспирант, кафедра вычислительной техники и программирования, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: oshurkov92@mail.ru. ORCID: https://orcid.org/0000-0002-9529-646X.

Паздерин Андрей Владимирович – д-р техн. наук, профессор, заведующий кафедрой, кафедра автоматизированных электрических систем, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия. E-mail: a.v.pazderin@urfu.ru. ORCID: https://orcid.org/0000-0003-4826-2387.

Панов Александр Николаевич – канд. техн. наук, доцент, начальник отдела инновационных разработок, ЗАО «КонсОМ СКС», г. Магнитогорск, Россия. E-mail: panov.a@konsom.ru.

Панова Евгения Александровна – канд. техн. наук, доцент, кафедра электрооснащения промышленных предприятий, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: ea.panova@magnu.ru. ORCID: https://orcid.org/0000-0001-9392-3346.

Патиш Николай Трофимович – канд. техн. наук, доцент, кафедра электрооснащения промышленных предприятий, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия.

Плехов Александр Сергеевич – канд. техн. наук, доцент, кафедра электрооборудования, электроэнергетика и автоматики, Нижегородский государственный технический университет им. Р.Е. Алексеева, г. Нижний Новгород, Россия. E-mail: aplehov@mail.ru.

Радионов Андрей Александрович – д-р техн. наук, профессор, кафедра макетирования и автоматизации, Южно-Уральский государственный университет (ИУ), г. Челябинск, Россия. E-mail: RadionovAA@rambler.ru.

Титов Дмитрий Юрьевич – канд. техн. наук, доцент, кафедра электрооборудования, электроэнергетика и автоматики, Нижегородский государственный технический университет им. Р.Е. Алексеева, г. Нижний Новгород, Россия. E-mail: d.titov@nntu.ru. ORCID: https://orcid.org/0000-0001-7320-984X.

Храмшин Тимур Рифхатович – канд. техн. наук, доцент, кафедра электрооснащения промышленных предприятий, институт энергетики и автоматизированных систем, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия.

Цин Тао – аспирант, кафедра макетирования и автоматизации, Южно-Уральский государственный университет (НИУ), г. Челябинск, Россия.

Чернов Евгений Александрович – д-р техн. наук, профессор, кафедра электрооборудования, электроэнергетика и автоматики, Нижегородский государственный технический университет им. Р.Е. Алексеева, г. Нижний Новгород, Россия. E-mail: evgenij.chernov.41@list.ru.

Черных Илья Викторович – д-р техн. наук, доцент, заведующий кафедрой, кафедра техники высоких напряжений, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия. E-mail: i.v.chernyh@urfu.ru.

Чистяков Дмитрий Владимирович – канд. соц. наук, исполнительный директор, ЗАО «Консом СКС», г. Магнитогорск, Россия. E-mail: dvc@konsom.ru.

Чусовитин Павел Валерьевич – канд. техн. наук, доцент, кафедра автоматизированных электрических систем, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия. E-mail: pychus@gmail.com. ORCID: https://orcid.org/0000-0002-5885-4821.

Шабалин Григорий Сергеевич – инженер первой категории, старший преподаватель, кафедра автоматизированных электрических систем, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия. E-mail: g.s.shabalin@urfu.ru. ORCID: https://orcid.org/0000-0003-0776-011X.
Уважаемые коллеги!

Приглашаем Вас опубликовать статьи в журнале «Электротехнические системы и комплексы».

Журнал «Электротехнические системы и комплексы» основан в 1996 году на базе международного сборника научных трудов, в котором публиковались статьи студентов, аспирантов и ученых, как из России, так и из-за рубежа. Начиная с 2014 года «Электротехнические системы и комплексы» выпускается как журнал с периодичностью четыре номера в год.

С 02.02.2016 журнал входит в Перечень рекомендуемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук по группам научных специальностей 05.09.00 – электротехника, 05.13.00 – информатика, вычислительная техника и управление, 05.14.00 – энергетика.

Журнал публикует научные работы по следующим рубрикам:
- теория и практика автоматизированного электропривода;
- электро- и теплоэнергетика;
- электроснабжение;
- энерго- и ресурсосбережение;
- промышленная электроника, автоматика и системы управления;
- электротехнологии в промышленности;
- информационное, математическое и программное обеспечение технических систем;
- мониторинг, контроль и диагностика электрооборудования.

Публикация статей является бесплатной.

Статьи, направленные в адрес журнала, проходят обязательное научное рецензирование и редактирование. Несоответствие материалов требованиям к статьям может служить поводом для отказа в публикации.

Статью должна быть набрана в шаблоне, который размещён на сайте журнала esik.magtu.ru в разделе «Руководство для авторов». Там же находится инструкция по его заполнению, в которой приведены требования к оформлению статей.

Авторы статьи должны гарантировать, что их работа публикуется впервые. Если элементы рукописи ранее были опубликованы в другой работе (статье, монографии, автореферате и т.д.), в том числе на другом языке, авторы обязаны сослаться на более раннюю работу. При этом они обязаны указать, в чем существенное отличие новой работы от предыдущей и, вместе с тем, выявить ее связь с результатами исследований и выводами, представленными в предыдущей работе. Дословное копирование собственных работ или ее элементов более чем на 30 % и их перефразирование не приемлемы!

Пакет подаваемых документов:
- рукопись статьи;
- информация об авторах;
- экспертное заключение о возможности опубликования;
- лицензионный договор, заполненный на каждого автора в двух экземплярах (отсканированная копия отправляется в формате pdf, оригиналы – по почте вместе с остальными документами).
Технический Университет им. Г.И. Носова

Научно-образовательный центр «Шнейдер Электрик – МГТУ им. Г.И. Носова»

Концептуальной основой НОЦ является интегрированная автоматизированная система управления (ИАСУ), позволяющая на технических и программных средствах SE изучать и проектировать как локальные объекты электроснабжения и электропривода, так и АСУ различных уровней. Такой подход при создании Центра дал возможность в процессе обучения не только изучать конкретное оборудование и программное обеспечение ИАСУ, но и разрабатывать собственные АСУ и системы автоматизации.

Наполнение центра современным оборудованием с возможностью включения его в АСУ различного уровня делает привлекательным прохождение теоретических и практических занятий как для разработчиков и проектировщиков, так и для служб эксплуатации и наладки промышленных предприятий.

Образовательный центр включает в себя компьютерный класс на 12 ПК и 24 посадочных места (разработка программно-технических комплексов с базовым программным обеспечением), мультимедийный класс на 18 посадочных мест (проведение презентаций, докладов и теоретических занятий), 4 лабораторных стенда, моделирующих работу интегрированной распределенной АСУ участка, цеха.

Перечень направлений подготовки в рамках НОЦ для бакалавров и магистрантов:
- 27.03.04 и 27.04.04 «Управление в технических системах»;
- 13.03.02 и 13.04.02 «Электроэнергетика и электротехника» (профили «Электропривод и автоматика» и «Электроснабжение»);
- 15.03.06 и 15.04.06 «Мехатроника и робототехника» (профиль «Мехатронные системы в автоматизированном производстве»).

Совместно разработанные программы «Шнейдер Электрик– МГТУ им. Г.И.Носова»:
- системы управления электроприводами на базе преобразователей частоты ATV32, ATV71 и ATV93 и библиотеки SoMove;
- примеры архитектуры локальной автоматики. Особенности конфигурирования контроллера Modicon M251и разработка приложений SoMachin;
- интеграция оборудования распределения электроэнергии и АСУТП в единую систему управления. Организация сетей CANopen и Ethernet.

Современные подходы к построению программно-технических комплексов.